题目内容

【题目】选修4-4:坐标系与参数方程

已知在极坐标系中,点是线段的中点,以极点为原点,极轴为轴的正半轴,并在两坐标系中取相同的长度单位,建立平面直角坐标系,曲线的参数方程是为参数).

(1)求点的直角坐标,并求曲线的普通方程;

(2)设直线过点交曲线两点,求的值.

【答案】(Ⅰ),. (Ⅱ)12.

【解析】试题分析:(1)根据将极坐标化为直角坐标,利用三角函数平方关系消参数得普通方程,(2)先设直线参数方程,再代人圆方程,利用参数几何意义求的值.

试题解析:((Ⅰ)将点的极坐标化为直角坐标,得.

所以点的直角坐标为.

消去参数,得,即为曲线的普通方程.

Ⅱ)解法一:直线的参数方程为为参数,为直线的倾斜角)

代入,整理得:.

设点对应的参数值分别为.

.

解法二:过点作圆的切线,切点为

连接,因为点由平面几何知识得:

所以 .

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网