题目内容
【题目】东莞市摄影协会准备在2019年10月举办主题为“庆祖国70华诞——我们都是追梦人”摄影图片展.通过平常人的镜头记录国强民富的幸福生活,向祖国母亲的生日献礼,摄影协会收到了来自社会各界的大量作品,打算从众多照片中选取100张照片展出,其参赛者年龄集中在之间,根据统计结果,做出频率分布直方图如图:
(1)求频率分布直方图中的值,并根据频率分布直方图,求这100位摄影者年龄的样本平均数和中位数(同一组数据用该区间的中点值作代表);
(2)为了展示不同年龄作者眼中的祖国形象,摄影协会按照分层抽样的方法,计划从这100件照片中抽出20个最佳作品,并邀请相应作者参加“讲述照片背后的故事”座谈会.
①在答题卡上的统计表中填出每组相应抽取的人数:
年龄 | |||||
人数 |
②若从年龄在的作者中选出2人把这些图片和故事整理成册,求这2人至少有一人的年龄在的概率.
【答案】(1),平均数为,中位数为(2)①见解析②
【解析】
(1)由频率分布直方图各个小矩形的面积之和为1可得,用区间中点值代替可计算均值,中位数把频率分布直方图中小矩形面积等分.
(2)①分层抽样,是按比例抽取人数;②年龄在有2人,在有4人,设在的是,,在的是,可用列举法列举出选2人的所有可能,然后可计算出概率.
(1)由频率分布直方图各个小矩形的面积之和为1,
得
在频率分布直方图中,这100位参赛者年龄的样本平均数为:
设中位数为,由,
解得.
(2)①每组应各抽取人数如下表:
年龄 | |||||
人数 | 1 | 2 | 4 | 8 | 5 |
②根据分层抽样的原理,年龄在有2人,在有4人,设在的是,,在的是,列举选出2人的所有可能如下:
,共15种情况.
设“这2人至少有一人的年龄在区间”为事件,则包含:
共9种情况
则
【题目】某高校从参加今年自主招生考试的学生中随机抽取容量为的学生成绩样本,得频率分布表如下:
组号 | 分组 | 频率 | 频数 |
第一组 | |||
第二组 | ① | ||
第三组 | ② | ||
第四组 | |||
第五组 | |||
合计 |
(1)写出表中①、②位置的数据;
(2)估计成绩不低于分的学生约占多少;
(3)为了选拔出更优秀的学生,高校决定在第三、四、五组中用分层抽样法抽取名学生进行第二轮考核,分别求第三、四、五各组参加考核的人数.