题目内容

已知二项式(
x
+
1
2
4x
)n
的展开式中,前三项的系数成等差数列.
(1)求n;
(2)求展开式中的一次项;
(3)求展开式中所有项的二项式系数之和.
分析:(1)由题意二项式(
x
+
1
2
4x
)n
的展开式中,前三项的系数成等差数列,可得出
C
0
n
+
1
4
×
C
2
n
=2×
1
2
×
C
1
n
,解此方程求出n的值;
(2)由项的展开式Tr+1=
C
r
8
(
x
)8-r(
1
2
4x
)r
整理得Tr+1=
C
r
8
(
1
2
)rx4-
3r
4
,令x的指数为1,解出r的值,即可求得一次项;
(3)二项式系数的和为C80+C81+C82+…+C88的和,计算出它的值即得.
解答:解:(1)前三项的系数为
C
0
n
1
2
C
1
n
1
4
C
2
n
,…(1分)
由题设,得 
C
0
n
+
1
4
×
C
2
n
=2×
1
2
×
C
1
n
,…(2分)
即n2-9n+8=0,解得n=8或n=1(舍去).           …(4分)
(2)Tr+1=
C
r
8
(
x
)8-r(
1
2
4x
)r
=
C
r
8
(
1
2
)rx4-
3r
4
,…(6分)
4-
3r
4
=1
,得r=4.…(8分)
所以展开式中的一次项为T5=
C
4
8
(
1
2
)4x=
35
8
x
.…(10分)
(3)∵C80+C81+C82+…+C88=28=256,
∴所有项的二项式系数和为256.…(14分)
点评:本题考点二项式系数的性质,考查了二项式的项,等差数列的性质,二项式系数和的公式,解题的关键是熟练掌握二项式的性质及等差数列的性质,二项式的性质是一个非常重要的考点,也是每年高考的必考点,本题很典型,包括了二项式的主要性质,题后注意总结
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网