题目内容

已知二项式(x+
1
2
)
n
的展开式中前三项的系数成等差数列.
(1)求n的值;
(2)设(x+
1
2
)
n
=a0+a1x+a2x2+…+ 
anxn.①求a5的值;②求a0-a1+a2-a3+…+(-1)nan的值.
分析:(1)由题意可得 2
C
1
n
1
2
=
C
0
n
+
C
2
n
•4,由此求得n的值.
(2)①在二项式的通项公式中,令x的幂指数等于5,求得 r的值,即可求得a5 的值.
②在等式(x+
1
2
)
8
 =a0+a1x+a2x2+…+ 
a8x8 中,令x=-1可得 a0-a1+a2-a3+…+(-1)8•a8的值.
解答:解:(1)由于已知二项式(x+
1
2
)
n
的展开式中前三项的系数
C
0
n
C
1
n
1
2
C
2
n
•22成等差数列,故有2
C
1
n
1
2
=
C
0
n
+
C
2
n
•4,
解得n=8,或 n=1(舍去).
(2)①二项式的通项公式为
C
r
8
•x8-r(
1
2
)
r
,令8-r=5,r=3,∴a5=
C
3
8
1
8
=
7
4

②在等式(x+
1
2
)
8
 =a0+a1x+a2x2+…+ 
a8x8 中,令x=-1可得 a0-a1+a2-a3+…+(-1)8•a8=
1
256
点评:本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,求展开式的系数和常用的方法是赋值法,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网