题目内容

【题目】现有正方形ABCD和一个以O为直角顶点的三角板,移动三角板,使三角板两直角边所在直线分别与直线BC、CD交于点M、N.

(1)如图1,若点O与点A重合,则OM与ON的数量关系是
(2)如图2,若点O在正方形的中心(即两对角线交点),则(1)中的结论是否仍然成立?请说明理由;
(3)如图3,若点O在正方形的内部(含边界),当OM=ON时,请探究点O在移动过程中可形成什么图形?
(4)如图4,是点O在正方形外部的一种情况.当OM=ON时,请你就“点O的位置在各种情况下(含外部)移动所形成的图形”提出一个正确的结论.(不必说明)

【答案】
(1)OM=ON
(2)

解:仍成立.

证明:如图2,

连接AC、BD,则

由正方形ABCD可得,∠BOC=90°,BO=CO,∠OBM=∠OCN=45°

∵∠MON=90°

∴∠BOM=∠CON

在△BOM和△CON中

∴△BOM≌△CON(ASA)

∴OM=ON.


(3)

解:如图3,

过点O作OE⊥BC,作OF⊥CD,垂足分别为E、F,则∠OEM=∠OFN=90°

又∵∠C=90°

∴∠EOF=90°=∠MON

∴∠MOE=∠NOF

在△MOE和△NOF中

∴△MOE≌△NOF(AAS)

∴OE=OF

又∵OE⊥BC,OF⊥CD

∴点O在∠C的平分线上

∴O在移动过程中可形成线段AC.


(4)

解:O在移动过程中可形成直线AC.


【解析】(1)解:若点O与点A重合,则OM与ON的数量关系是:OM=ON;

(1)根据△OBM与△ODN全等,可以得出OM与ON相等的数量关系;
    (2)连接AC、BD,则通过判定△BOM≌△CON,可以得到OM=ON;
    (3)过点O作OE⊥BC,作OF⊥CD,可以通过判定△MOE≌△NOF,得出OE=OF,进而发现点O在∠C的平分线上;
    (4)可以运用(3)中作辅助线的方法,判定三角形全等并得出结论.本题主要考查了四边形中的正方形,解决问题的关键是作辅助线构造全等三角形.解题时需要运用全等三角形的判定与性质,以及角平分线的判定定理.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网