题目内容
【题目】
【答案】(1),极小值为无极大值;(2)见解析;(3)见解析.
【解析】试题分析:(1)求导,由,由导数工具求得极值;(2)令, ;(3)解法一:①若,由(2)得,存在 使得命题恒成立.②若 ,令 ,命题转化为 成立,即只要 成立.令 ,利用导数工具得:取 , .即存在 ,使得原命题成立. 解法二:对任意给定的正数c,取由(2)知,当x>0时, 当时, ,故对任意给定的正数c,总存在,当时,恒有.
试题解析:
(1)由,得.又,得.所以
.令,得.当时, 单
调递减;当时, 单调递增.所以当时, 取得极小值,且极
小值为无极大值.
(2)令,则.由(I)得,故在R上单调递增,又,因此,当时, ,即,
(3)解法一:①若,则.又由(II)知,当时, .所以当时, .取,当时,恒有.
②若,令,要使不等式成立,只要成立.而要使成立,则只要,只要成立.令,则.所以当时, 在内单调递增.取,所以在内单调递增.又.易知.所以.即存在,当时,恒有.
综上,对任意给定的正数c,总存在,当时,恒有.
解法二:对任意给定的正数c,取
由(2)知,当x>0时, ,所以
当时,
因此,对任意给定的正数c,总存在,当时,恒有.
练习册系列答案
相关题目
【题目】一台机器按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点的零件的多少随机器的运转的速度的变化而变化,下表为抽样试验的结果:
转速/(转/秒) | 16 | 14 | 12 | 8 |
每小时生产有缺点的零件数/件 | 11 | 9 | 8 | 5 |
(1)画出散点图;
(2)如果对有线性相关关系,请画出一条直线近似地表示这种线性关系;
(3)在实际生产中,若它们的近似方程为,允许每小时生产的产品中有缺点的零件最多为件,那么机器的运转速度应控制在什么范围内?