题目内容
【题目】已知函数f(x)=2x+sinx,且f(y2﹣2y+3)+f(x2﹣4x+1)≤0,则当y≥1时, 的取值范围是( )
A.
B.
C.
D.
【答案】A
【解析】解:∵f(x)=2x+sinx(x∈R),
∴f(﹣x)=﹣2x﹣sinx=﹣(2x+sinx)=﹣f(x),
即f(x)=2x+sinx(x∈R)是奇函数,
∵f(y2﹣2y+3)+f(x2﹣4x+1)≤0,
∴f(y2﹣2y+3)≤﹣f(x2﹣4x+1)=f[﹣(x2﹣4x+1)],
由f'(x)=1﹣cosx≥0,
∴函数单调递增.
∴(y2﹣2y+3)≤﹣(x2﹣4x+1),
即(y2﹣2y+3)+(x2﹣4x+1)≤0,
∴(y﹣1)2+(x﹣2)2≤1,
∵y≥1,
∴不等式对应的平面区域为圆心为(2,1),半径为1的圆的上半部分.
的几何意义为动点P(x,y)到定点A(﹣1,0)的斜率的取值范围.
设k= ,(k>0)
则y=kx+k,即kx﹣y+k=0.
当直线和圆相切是,圆心到直线的距离d= =1,
即8k2﹣6k=0,解得k= .此时直线斜率最大.
当直线kx﹣y+k=0.经过点B(3,1)时,直线斜率最小,
此时3k﹣1+k=0,即4k=1,解得k=
∴ ≤k≤ ,
故选:A.
【考点精析】通过灵活运用奇偶性与单调性的综合,掌握奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性即可以解答此题.
【题目】全世界越来越关注环境保护问题,某监测站点于2018年1月某日起连续天监测空气质量指数(),数据统计如下:
空气质量指数() | |||||
空气质量等级 | 空气优 | 空气良 | 轻度污染 | 中度污染 | 重度污染 |
天数 | 20 | 40 | 10 | 5 |
(1)根据所给统计表和频率分布直方图中的信息求出,的值,并完成频率分布直方图;
(2)由频率分布直方图,求该组数据的众数和中位数;
(3)在空气质量指数分别属于和的监测数据中,用分层抽样的方法抽取天,再从中任意选取天,求事件“两天空气都为良”发生的概率.
【题目】种植于道路两侧、为车辆和行人遮阴并构成街景的乔木称为行道树为确保行人、车辆和临近道路附属设施安全,树木与原有电力线之间的距离不能超出安全距离按照北京市行道树修剪规范要求,当树木与原有电力线发生矛盾时,应及时修剪树枝行道树修剪规范中规定,树木与原有电力线的安全距离如表所示:树木与电力线的安全距离表
电力线 | 安全距离单位: | |
水平距离 | 垂直距离 | |
| ||
| ||
| ||
| ||
330KV | ||
500KV |
现有某棵行道树已经自然生长2年,高度为据研究,这种行道树自然生长的时间年与它的高度满足关系式
1______;将结果直接填写在答题卡的相应位置上
2如果这棵行道树的正上方有35kV的电力线,该电力线距地面那么这棵行道树自然生长多少年必须修剪?
3假如这棵行道树的正上方有500KV的电力线,这棵行道树一直自然生长,始终不会影响电力线段安全,那么该电力线距离地面至少多少米?