题目内容

【题目】在定义域内既是奇函数又是减函数的是(  )
A.y=
B.y=﹣x+
C.y=﹣x|x|
D.y=

【答案】C
【解析】解:A.y=在定义域内没有单调性,∴该选项错误;
B.x=-时,y=- , x=1时,y=0;
∴该函数在定义域内不是减函数,∴该选项错误;
C.y=﹣x|x|的定义域为R,且﹣(﹣x)|﹣x|=x|x|=﹣(﹣x|x|);
∴该函数为奇函数;

∴该函数在[0,+∞),(﹣∞,0)上都是减函数,且﹣02=02
∴该函数在定义域R上为减函数,∴该选项正确;
D.y=
∵﹣0+1>﹣0﹣1;
∴该函数在定义域R上不是减函数,∴该选项错误.
故选:C.
根据反比例函数在定义域上的单调性,减函数的定义,以及奇函数的定义,分段函数单调性的判断方法便可判断每个选项的正误,从而找出正确选项.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网