题目内容
已知双曲线,为上任意一点;(1)求证:点到双曲线的两条渐近线的距离的乘积是一个常数;(2)设点,求的最小值.
(1)(2)
解析试题分析:(1)渐近线:,设,到两条渐近线的距离乘积(2),又当时,考点:双曲线的性质 点评:解决的关键是利用双曲线的性质来求解渐近线,以及结合函数的思想求解最值,属于基础题。
已知平面内一动点到点的距离与点到轴的距离的差等于1.(I)求动点的轨迹的方程;(II)过点作两条斜率存在且互相垂直的直线,设与轨迹相交于点,与轨迹相交于点,求的最小值.
已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,右顶点为,设点.(1)求该椭圆的标准方程;(2)若是椭圆上的动点,求线段中点的轨迹方程;(3)过原点的直线交椭圆于点,求面积的最大值。
求满足下列条件的椭圆方程长轴在轴上,长轴长等于12,离心率等于;椭圆经过点;椭圆的一个焦点到长轴两端点的距离分别为10和4.
直角坐标平面上,为原点,为动点,,. 过点作轴于,过作轴于点,. 记点的轨迹为曲线,点、,过点作直线交曲线于两个不同的点、(点在与之间).(1)求曲线的方程;(2)是否存在直线,使得,并说明理由.
已知椭圆的离心率为,且过点.(1)求椭圆的标准方程;(2)四边形ABCD的顶点在椭圆上,且对角线A C、BD过原点O,若,(i) 求的最值.(ii) 求证:四边形ABCD的面积为定值;
已知椭圆的中心在原点,焦点在轴上,一条经过点且方向向量为的直线交椭圆于两点,交轴于点,且.(1)求直线的方程;(2)求椭圆长轴长的取值范围.
(本小题满分14分)已知椭圆的中心在坐标原点,两个焦点分别为,,点在椭圆 上,过点的直线与抛物线交于两点,抛物线在点处的切线分别为,且与交于点.(1) 求椭圆的方程;(2) 是否存在满足的点? 若存在,指出这样的点有几个(不必求出点的坐标); 若不存在,说明理由.
已知椭圆E:的焦点坐标为(),点M(,)在椭圆E上.(Ⅰ)求椭圆E的方程;(Ⅱ)设Q(1,0),过Q点引直线与椭圆E交于两点,求线段中点的轨迹方程;