题目内容

7.已知x、y满足$\left\{\begin{array}{l}{x≤2}\\{y≤2}\\{x+y≥2}\end{array}\right.$,则z=x+2y的最大值为6.

分析 作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.

解答 解:作出不等式组对应的平面区域如图:(阴影部分).
由z=x+2y得y=-$\frac{1}{2}$x+$\frac{1}{2}$z,
平移直线y=-$\frac{1}{2}$x+$\frac{1}{2}$z,
由图象可知当直线y=-$\frac{1}{2}$x+$\frac{1}{2}$z经过点B时,直线y=-$\frac{1}{2}$x+$\frac{1}{2}$z的截距最大,
此时z最大.
由$\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$,即B(2,2),
代入目标函数z=x+2y得z=2×2+2=6
故答案为:6.

点评 本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网