题目内容
7.已知x、y满足$\left\{\begin{array}{l}{x≤2}\\{y≤2}\\{x+y≥2}\end{array}\right.$,则z=x+2y的最大值为6.分析 作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.
解答 解:作出不等式组对应的平面区域如图:(阴影部分).
由z=x+2y得y=-$\frac{1}{2}$x+$\frac{1}{2}$z,
平移直线y=-$\frac{1}{2}$x+$\frac{1}{2}$z,
由图象可知当直线y=-$\frac{1}{2}$x+$\frac{1}{2}$z经过点B时,直线y=-$\frac{1}{2}$x+$\frac{1}{2}$z的截距最大,
此时z最大.
由$\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$,即B(2,2),
代入目标函数z=x+2y得z=2×2+2=6
故答案为:6.
点评 本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.
练习册系列答案
相关题目
17.两台车床加工同一种机械零件如表:
从这100个零件中任取一个零件,取得的零件是甲机床加工的合格品的概率是$\frac{7}{20}$.
合格品 | 次品 | 总计 | |
甲机床加工的零件数 | 35 | 5 | 40 |
乙机床加工的零件数 | 50 | 10 | 60 |
总计 | 85 | 15 | 100 |
2.定义在R上的函数f(x)满足f(x+6)=f(x).当-3≤x<-1时,f(x)=-(x+2)2,当-1≤x<3时,f(x)=x.则f(1)+f(2)+…+f(2015)=( )
A. | 333 | B. | 336 | C. | 1678 | D. | 2015 |
16.“直线l垂直于平面α内两直线a,b”是“直线l⊥平面α”的( )
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |