题目内容

21、设数列{an}的前n项和为Sn=2an-2n
(Ⅰ)求a1,a4
(Ⅱ)证明:{an+1-2an}是等比数列;
(Ⅲ)求{an}的通项公式.
分析:(Ⅰ)令n=1得到s1=a1=2并推出an,令n=2求出a2,s2得到a3推出a4即可;
(Ⅱ)由已知得an+1-2an=(Sn+2n+1)-(Sn+2n)=2n+1-2n=2n即为等比数列;
(Ⅲ)an=(an-2an-1)+2(an-1-2an-2)++2n-2(a2-2a1)+2n-1a1=(n+1)•2n-1即可.
解答:解:(Ⅰ)因为a1=S1,2a1=S1+2,所以a1=2,S1=2
由2an=Sn+2n知2an+1=Sn+1+2n+1=an+1+Sn+2n+1
得an=sn+2n+1
所以a2=S1+22=2+22=6,S2=8a3=S2+23=8+23=16,S2=24a4=S3+24=40
(Ⅱ)由题设和①式知an+1-2an=(Sn+2n+1)-(Sn+2n)=2n+1-2n=2n
所以{an+1-2an}是首项为2,公比为2的等比数列.
(Ⅲ)an=(an-2an-1)+2(an-1-2an-2)++2n-2(a2-2a1)+2n-1a1=(n+1)•2n-1
点评:此题重点考查数列的递推公式,利用递推公式求数列的特定项,通项公式等,同时考查学生掌握数列的递推式以及等比数列的通项公式的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网