题目内容

设数列{an}的前n项和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的关系式;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)证明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*
分析:(Ⅰ)由Sn=2an+
3
2
×(-1)n-
1
2
,n=1,2,3,…,再写一式,两式相减整理可得an=2an-1+3×(-1)n-1
(Ⅱ)由(Ⅰ)令bn=(-1)nan得bn=-2bn-1-3,构造新数列bn+1是等比数列,从而可求数列{an}的通项公式;
(Ⅲ)由Sn=2n -
(-1)n+1
2
,∴S2k-1=22k-1,S2k=22k-1,再进行分组求和,利用等比数列的求和公式可证.
解答:解:(Ⅰ)由Sn=2an+
3
2
×(-1)n-
1
2
,n=1,2,3,…,①
得Sn-1=2an-1+
3
2
×(-1)n-1-
1
2
,n=2,3,…,②…(1分)
将①和②相减得:an=2(an-an-1)+
3
2
[-(-1)n-1-(-1)n-1]
,n=2,3,…,…(2分)
整理得:an=2an-1+3×(-1)n-1,n=2,3,….      …(3分)
(Ⅱ)在已知条件中取n=1得,a1=2a1-
3
2
-
1
2
,∴a1═2.…(4分)
∵an=2an-1+3×(-1)n-1,∴(-1)nan=-2(-1)n-1an-1-3,
∴令bn=(-1)nan得bn=-2bn-1-3,n=2,3,….…(5分)
∴bn+1+1=-2(bn+1),n=1,2,3,…,
∵b1+1=-1≠0,∴bn+1=(-1)×(-2)n-1,n=1,2,3,…,
∴an=2n-1+(-1)n-1.     …(7分)
(Ⅲ)∵Sn=2n -
(-1)n+1
2
,∴S2k-1=22k-1,S2k=22k-1.      …(8分)
1
S1
+
1
S2
+…+
1
S2n
=(
1
2
+
1
8
+…+
1
22n-1
)+(
1
22-1
+…+
1
22n-1
)
10
9
(1-
1
4n
)<
10
9
.      …(10分)
同理
1
S1
+
1
S2
+…+
1
S2n-1
10
9
,∴
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*.  …(12分)
点评:本题主要考查数列通项公式的求解,考查数列与不等式的综合,有一定的难度.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网