题目内容
【题目】已知函数,.
(1)若,求曲线在点处的切线方程;
(2)若关于的不等式在上恒成立,求实数的取值范围.
【答案】(1)(2).
【解析】
(1)根据解析式求得切点,利用导数求得切线斜率,从而可求得切线方程;(2)将问题转化为在上恒成立;当单调递减时满足题意,即恒成立即可,从而可求得;当时,单调递增,不符合题意;当时,可证得在上单调递增,不满足题意;综合三种情况可得.
(1)当时,,则
故,又
故所求切线方程为,即
(2)由题意得,在上恒成立
设函数,则
故对任意,不等式恒成立
①当,即恒成立时,函数在上单调递减
设,则
,即,解得,符合题意;
②当时,恒成立,此时函数在上单调递增
则不等式对任意恒成立,不符合题意;
③当时,设,则
令,解得
当时,,此时单调递增
故当时,函数单调递增
当时,成立,不符合题意.
综上所述,实数的取值范围为
【题目】某超市开展年终大回馈,设计了两种答题游戏方案:
方案一:顾客先回答一道多选题,从第二道开始都回答单选题;
方案二:顾客全部选择单选题进行回答;
其中每道单选题答对得2分,每道多选题答对得3分,无论单选题还是多选题答错都得0分,每名参与的顾客至多答题3道.在答题过程中得到3分或3分以上立刻停止答题,并获得超市回馈的赠品.
为了调查顾客对方案的选择情况,研究人员调查了参与游戏的500名顾客,所得结果如下表所示:
男性 | 女性 | |
选择方案一 | 150 | 80 |
选择方案二 | 150 | 120 |
(1)是否有95%的把握认为方案的选择与性别有关?
(2)小明回答每道单选题的正确率为0.8,多选题的正确率为0.75,.
①若小明选择方案一,记小明的得分为,求的分布列及期望;
②如果你是小明,你觉得选择哪种方案更有可能获得赠品,请通过计算说明理由.
附:,
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.
日期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
昼夜温差(℃) | 10 | 11 | 13 | 12 | 8 | 6 |
就诊人数(个) | 22 | 25 | 29 | 26 | 16 | 12 |
(1)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出关于的线性回归方程;
(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?
(参考数据,)
(参考公式:,)