题目内容

9.已知边长为$\sqrt{2}$的正方形ABCD的对角线BD上任意取一点P,则$\overrightarrow{BP}$•($\overrightarrow{PA}$+$\overrightarrow{PC}$)的取值范围是$[-4,\frac{1}{2}]$.

分析 如图所示,建立直角坐标系,可得A(0,0),$B(\sqrt{2},0)$,C$(\sqrt{2},\sqrt{2})$,$D(0,\sqrt{2})$.设$\overrightarrow{BP}=λ\overrightarrow{BD}$=$(-\sqrt{2}λ,\sqrt{2}λ)$,(0≤λ≤1).利用向量的坐标运算与数量积运算性质可得:$\overrightarrow{BP}$•($\overrightarrow{PA}$+$\overrightarrow{PC}$)=-8$(λ-\frac{1}{4})^{2}$+$\frac{1}{2}$=f(λ),再利用二次函数的单调性即可得出.

解答 解:如图所示,
A(0,0),$B(\sqrt{2},0)$,C$(\sqrt{2},\sqrt{2})$,$D(0,\sqrt{2})$.
$\overrightarrow{BD}$=$(-\sqrt{2},\sqrt{2})$,
设$\overrightarrow{BP}=λ\overrightarrow{BD}$=$(-\sqrt{2}λ,\sqrt{2}λ)$,(0≤λ≤1).
则$\overrightarrow{OP}$=$\overrightarrow{OB}+λ\overrightarrow{BD}$=$(\sqrt{2},0)$+λ$(-\sqrt{2},\sqrt{2})$=$(\sqrt{2}-\sqrt{2}λ,\sqrt{2}λ)$.
∴$\overrightarrow{PA}$=$(\sqrt{2}λ-\sqrt{2},-\sqrt{2}λ)$,$\overrightarrow{PC}$=$(\sqrt{2}λ,\sqrt{2}-\sqrt{2}λ)$,
∴$\overrightarrow{PA}+\overrightarrow{PC}$=$(2\sqrt{2}λ-\sqrt{2},\sqrt{2}-2\sqrt{2}λ)$.
∴$\overrightarrow{BP}$•($\overrightarrow{PA}$+$\overrightarrow{PC}$)=$-\sqrt{2}λ$$(2\sqrt{2}λ-\sqrt{2})$+$\sqrt{2}λ$$(\sqrt{2}-2\sqrt{2}λ)$=-8λ2+4λ=-8$(λ-\frac{1}{4})^{2}$+$\frac{1}{2}$=f(λ),
∵0≤λ≤1,∴当$λ=\frac{1}{4}$时,f(λ)取得最大值$\frac{1}{2}$.
又f(0)=0,f(1)=-4,
∴λ=1时,f(λ)取得最小值-4.
∴f(λ)∈$[-4,\frac{1}{2}]$.
故答案为:$[-4,\frac{1}{2}]$.

点评 本题考查了向量的坐标运算与数量积运算性质、二次函数的单调性,考查了推理能力与技能数列,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网