题目内容
【题目】如图,梯形ABCD内接于⊙O,AD∥BC,过点C作⊙O的切线,交BD的延长线于点P,交AD的延长线于点E.
(1)求证:AB2=DEBC;
(2)若BD=9,AB=6,BC=9,求切线PC的长.
【答案】
(1)解:∵AD∥BC
∴AB=DC,∠EDC=∠BCD,
又PC与⊙O相切,∴∠ECD=∠DBC,
∴△CDE∽△BCD,∴ ,
∴CD2=DEBC,即AB2=DEBC
(2)解:由(1)知, ,
∵△PDE∽△PBC,
∴ .
又∵PB﹣PD=9,
∴ .
∴ .
∴
【解析】对于(1)求证:AB2=DEBC,根据题目可以判断出梯形为等腰梯形,故AB=CD,然后根据角的相等证△CDE相似于△BCD,根据相似的性质即可得到答案.
对于(2)由BD=9,AB=6,BC=9,求切线PC的长.根据弦切公式可得PC2=PDPB,然后根据相似三角形边成比例的性质求出PD和PB代入即可求得答案.
练习册系列答案
相关题目
【题目】小王每天自己开车上班,他在路上所用的时间(分钟)与道路的拥堵情况有关.小王在一年中随机记录了200次上班在路上所用的时间,其频数统计如下表,用频率近似代替概率.
(分钟) | 15 | 20 | 25 | 30 |
频数(次) | 50 | 50 | 60 | 40 |
(Ⅰ)求小王上班在路上所用时间的数学期望;
(Ⅱ)若小王一周上班5天,每天的道路拥堵情况彼此独立,设一周内上班在路上所用时间不超过的天数为,求的分布列及数学期望.