Processing math: 100%

题目内容

20.如图,过抛物线C:y2=2px(p>0)焦点F的直线与C交于 M,N两点,直线x=4交抛物线C于 A,B两点,点 M,N在直线x=4的同侧.已知|AF|=5,四边形AMNB的面积为1338
(Ⅰ)求p的值;
(Ⅱ)求直线MN的方程.

分析 (Ⅰ)求出抛物线的焦点和准线,由抛物线的定义,即可求得p;
(Ⅱ)设M(x1,y1),N(x2,y2),直线MN:x=my+1,代入抛物线方程,消去x,得到y的方程,运用韦达定理,对m讨论,当0≤m<34时,将四边形面积转化为三个三角形的面积之和,解方程即可得到m,再讨论当-34<m<0,解得m,即可得到所求方程.

解答 解:(Ⅰ)抛物线C:y2=2px的焦点为(p2,0),
准线为x=-p2,A的横坐标为4,
由抛物线的定义可得|AF|=4+p2=5,
解得p=2;
(Ⅱ)设M(x1,y1),N(x2,y2),直线MN:x=my+1,
代入抛物线方程y2=4x,可得y2-4my-4=0,
即有y1+y2=4m,y1y2=-4,
|y1-y2|=y1+y224y1y2=41+m2
当0≤m<34时,设AB与x轴交于E,
则S=S△MNE+S△AEM+S△BEN
=32|y1-y2|+2(4-x1+4-x2
=61+m2+12-8m2
=-8(m2+1)+6m2+1+20,
由S=1338,则-8(m2+1)+6m2+1+20=1338
令t=m2+1,1≤t<54
则-8t2+6t+20=1338
解得t=98,即m=178.故直线MN:x=178y+1;
同理当-34<m<0,可得m=-178
故直线MN:y=±81717(x-1).

点评 本题考查抛物线的定义、方程和性质,同时考查直线方程和抛物线方程联立,运用韦达定理,以及三角形的面积公式的运用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网