题目内容
5.已知不等式组$\left\{\begin{array}{l}{m+n≤2}\\{n-m≤2}\\{n≥1}\end{array}\right.$,求$\sqrt{{m}^{2}+{n}^{2}}$的取值范围.分析 由题意作出可行域,由$\sqrt{{m}^{2}+{n}^{2}}$的几何意义即可求得其取值范围.
解答 解:由约束条件$\left\{\begin{array}{l}{m+n≤2}\\{n-m≤2}\\{n≥1}\end{array}\right.$作出可行域如图,
$\sqrt{{m}^{2}+{n}^{2}}$的几何意义为坐标原点到可行域内动点距离,
由图可知:$(\sqrt{{m}^{2}+{n}^{2}})_{min}=1,(\sqrt{{m}^{2}+{n}^{2}})max=2$.
∴$\sqrt{{m}^{2}+{n}^{2}}$的取值范围是(1,2).
点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.
练习册系列答案
相关题目
15.某中学有三个年级,各年级男、女生人数如表所示:
已知在全校学生中随机抽取1名学生,抽到三年级男生的概率是0.15.
(Ⅰ)求z的值;
(Ⅱ)用水机抽样的方法从高一年级女生中选出8人,测量他们的体重,结果如下:52,56,60,61,55,62,58,59(单位:kg).把这8人的体重看作一个总体,从中任取一个数,求该数ξ样本平均数之差的绝对值不超过2的概率;
(Ⅲ)用分层抽样的方法在高三年级中抽取一个容量为5的样本,将该样本看成一个总体,从中任选2名学生,求这2名学生均为男生的概率.
高一年级 | 高二年级 | 高三年级 | |
女生 | 370 | z | 200 |
男生 | 380 | 370 | 300 |
(Ⅰ)求z的值;
(Ⅱ)用水机抽样的方法从高一年级女生中选出8人,测量他们的体重,结果如下:52,56,60,61,55,62,58,59(单位:kg).把这8人的体重看作一个总体,从中任取一个数,求该数ξ样本平均数之差的绝对值不超过2的概率;
(Ⅲ)用分层抽样的方法在高三年级中抽取一个容量为5的样本,将该样本看成一个总体,从中任选2名学生,求这2名学生均为男生的概率.