ÌâÄ¿ÄÚÈÝ
£¨2008•ÄÏ»ãÇø¶þÄ££©ÊýÁÐ{an}¸÷Ïî¾ùΪÕýÊý£¬SnΪÆäÇ°nÏîµÄºÍ£®¶ÔÓÚn¡ÊN*£¬×ÜÓÐan£¬Sn£¬an2³ÉµÈ²îÊýÁУ®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏîan£»
£¨2£©ÉèÊýÁÐ{
}µÄÇ°nÏîºÍΪTn£¬ÊýÁÐ{Tn}µÄÇ°nÏîºÍΪRn£¬ÇóÖ¤£ºµ±n¡Ý2£¬n¡ÊNʱ£¬Rn-1=n£¨Tn-1£©£»
£¨3£©Èôº¯Êýf(x)=
µÄ¶¨ÒåÓòΪRn£¬²¢ÇÒ
f(an)=0(n¡ÊN*)£¬ÇóÖ¤p+q£¾1£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏîan£»
£¨2£©ÉèÊýÁÐ{
1 |
an |
£¨3£©Èôº¯Êýf(x)=
1 |
(p-1)•3qx+1 |
lim |
n¡ú¡Þ |
·ÖÎö£º£¨1£©Ö÷ÒªÀûÓõȲîÖÐÏîµÃ³öSnÓëanµÄ¹Øϵʽ£¬ÔÚÀûÓà an =
¿ÉÇó³öan£®
£¨2£©¾ÍÊÇÒªÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£¬ÏÈÑéÖ¤£ºn=2ʱµÈʽ³ÉÁ¢£¬ÔÙ¼ÙÉè n=kʱµÈʽ³ÉÁ¢£¬ÍÆn=k+1ʱ³ÉÁ¢£¬ÆäÖÐÓÐÒªÀûÓúüÙÉèÌõ¼þºÍRk=Rk-1+Tk¾Í¿ÉÖ¤³ö£®
£¨3£©ÏÈ˵Ã÷£ºq¡Ù0£®Èç¹ûq=0£¬Ôòf(x)=
£¬
f(an)²»ÊÇ0£¬¡àq¡Ù0£»ÔÙ¸ù¾Ý(p-1)•3qx+1¡Ù0ºã³ÉÁ¢£®¼´p-1¡Ù-(
)xºã³ÉÁ¢£®ÓÉÓÚq¡Ù0ʱ£¬-(
)xµÄÖµÓòΪ£¨-¡Þ£¬0£©£¬½áºÏÌõ¼þµÃ³ö3q£¾1´Ó¶øµÃ³öp+q£¾1£®
|
£¨2£©¾ÍÊÇÒªÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£¬ÏÈÑéÖ¤£ºn=2ʱµÈʽ³ÉÁ¢£¬ÔÙ¼ÙÉè n=kʱµÈʽ³ÉÁ¢£¬ÍÆn=k+1ʱ³ÉÁ¢£¬ÆäÖÐÓÐÒªÀûÓúüÙÉèÌõ¼þºÍRk=Rk-1+Tk¾Í¿ÉÖ¤³ö£®
£¨3£©ÏÈ˵Ã÷£ºq¡Ù0£®Èç¹ûq=0£¬Ôòf(x)=
1 |
p |
lim |
n¡ú¡Þ |
1 |
3q |
1 |
3q |
½â´ð£º½â£º£¨1£©ÓÉÒÑÖªn¡ÊN*ʱ£¬2Sn=an+an2×ܳÉÁ¢£®¡à2Sn-1=an-1+an-12£¨n¡Ý2£©£¬
Á½Ê½×÷²î£¬µÃ2an=an+an2-an-1-an-12£¬¡àan+an-1=£¨an+an-1£©£¨an-an-1£©£¬¡ßan¡¢an-1¾ùΪÕýÊý£®¡àan-an-1=1£¨n¡Ý2£©£®¡à{an}Êǹ«²îΪ1µÄµÈ²îÊýÁУ®
ÓÖn=1ʱ£¬2S1=2a1=a1+a12£¬µÃa1=1£¬¹Êan=n£®¡£¨4·Ö£©
£¨2£©ÏÂÃæÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£º
¢Ùµ±n=2ʱ£¬R1=T1=
=1£¬2(T2-1)=2(
+
-1)=1£®¡àn=2ʱ£¬µÈʽ³ÉÁ¢
¢Ú¼ÙÉèµ±n=k£¨k¡Ý2£©Ê±£¬
×ۺϢٺ͢ڣ¬¿ÉÖªËùÒªÖ¤Ã÷µÄµÈʽ³ÉÁ¢£®¡£¨10·Ö£©
£¨3£©Èç¹ûq=0£¬Ôòf(x)=
£¬
f(an)²»ÊÇ0£¬¡àq¡Ù0£¬¡ßf£¨x£©¶¨ÒåÓòΪR£¬
¡à(p-1)•3qx+1¡Ù0ºã³ÉÁ¢£®¼´p-1¡Ù-(
)xºã³ÉÁ¢£®ÓÉÓÚq¡Ù0ʱ£¬-(
)xµÄÖµÓòΪ£¨-¡Þ£¬0£©£¬
¡àp-1¡Ý0£¬ÓÖµ±p=1ʱ£¬f£¨x£©=1.
f(an)¡Ù0£¬
¡àp£¾1£®
¡ß
f(an)=
=
¡à3q£¾1£¬¡àq£¾0£¬¹Êp+q£¾1¡16·Ö
Á½Ê½×÷²î£¬µÃ2an=an+an2-an-1-an-12£¬¡àan+an-1=£¨an+an-1£©£¨an-an-1£©£¬¡ßan¡¢an-1¾ùΪÕýÊý£®¡àan-an-1=1£¨n¡Ý2£©£®¡à{an}Êǹ«²îΪ1µÄµÈ²îÊýÁУ®
ÓÖn=1ʱ£¬2S1=2a1=a1+a12£¬µÃa1=1£¬¹Êan=n£®¡£¨4·Ö£©
£¨2£©ÏÂÃæÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£º
¢Ùµ±n=2ʱ£¬R1=T1=
1 |
a1 |
1 |
a1 |
1 |
a2 |
¢Ú¼ÙÉèµ±n=k£¨k¡Ý2£©Ê±£¬
|
×ۺϢٺ͢ڣ¬¿ÉÖªËùÒªÖ¤Ã÷µÄµÈʽ³ÉÁ¢£®¡£¨10·Ö£©
£¨3£©Èç¹ûq=0£¬Ôòf(x)=
1 |
p |
lim |
n¡ú¡Þ |
¡à(p-1)•3qx+1¡Ù0ºã³ÉÁ¢£®¼´p-1¡Ù-(
1 |
3q |
1 |
3q |
¡àp-1¡Ý0£¬ÓÖµ±p=1ʱ£¬f£¨x£©=1.
lim |
n¡ú¡Þ |
¡àp£¾1£®
¡ß
lim |
n¡ú¡Þ |
lim |
n¡ú¡Þ |
1 |
(p-1)•3qn+1 |
|
¡à3q£¾1£¬¡àq£¾0£¬¹Êp+q£¾1¡16·Ö
µãÆÀ£º±¾ÌâµÄµÚ1ÎʱȽϼòµ¥£¬Ö÷Òª¿¼²éÁË an =
Õâ¸ö֪ʶµã£®µÚ2ÎÊÖ÷Òª¿¼²éÁËÊýѧ¹éÄÉ·¨Ö¤Ã÷£¬¹Ø¼üÔÚÓÚ n=k+1ʱµÄÍƵ¼¹ý³ÌÒªÀûÓúüÙÉèÌõ¼þºÍÌâµÄÌõ¼þ£¬ÔËËãµÄ¼¼ÇÉÐÔ½ÏÇ¿£®
|
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿