题目内容
(2008•南汇区二模)过定点(1,2)作两直线与圆x2+y2+kx+2y+k2-15=0相切,则k的取值范围是( )
分析:把圆的方程化为标准方程后,根据构成圆的条件得到等号右边的式子大于0,列出关于k的不等式,求出不等式的解集,然后由过已知点总可以作圆的两条切线,得到点在圆外,故把点的坐标代入圆的方程中得到一个关系式,让其大于0列出关于k的不等式,求出不等式的解集,综上,求出两解集的交集即为实数k的取值范围.
解答:解:把圆的方程化为标准方程得:(x+
k)2+(y+1)2=16-
k2,
所以16-
k2>0,解得:-
<k<
,
又点(1,2)应在已知圆的外部,
把点代入圆方程得:1+4+k+4+k2-15>0,即(k-2)(k+3)>0,
解得:k>2或k<-3,
则实数k的取值范围是(-
,-3)∪(2,
).
故选D
1 |
2 |
3 |
4 |
所以16-
3 |
4 |
8
| ||
3 |
8
| ||
3 |
又点(1,2)应在已知圆的外部,
把点代入圆方程得:1+4+k+4+k2-15>0,即(k-2)(k+3)>0,
解得:k>2或k<-3,
则实数k的取值范围是(-
8
| ||
3 |
8
| ||
3 |
故选D
点评:此题考查了点与圆的位置关系,二元二次方程为圆的条件及一元二次不等式的解法.理解过已知点总利用作圆的两条切线,得到把点坐标代入圆方程其值大于0是解本题的关键.
练习册系列答案
相关题目