题目内容
已知向量a=3e1-2e2,b=4e1+e2,其中e1=(1,0),e2=(0,1),求:
(1)a·b,|a+b|;(2)a与b的夹角的余弦值.
(1)10,;(2).
解析试题分析:先根据向量是互相垂直的单位向量表示出向量要用的两个向量,然后根据向量的数量积运算和向量模的运算求出答案.(2)先求出向量的模长,然后根据cosθ的表示式将数值代入即可得到答案.本题主要考查向量的模、平面向量的坐标运算、数量积运算,本题解题的关键是根据所给的两个单位向量,写出要用的向量的坐标.
(1)a=3(1,0)-2(0,1)=(3,-2),b=4(1,0)+(0,1)=(4,1),a·b=3×4+(-2)×1=10,
∵|a+b|2=(a+b)2=a2+2a·b+b2=|a|2+20+|b|2=13+20+17=50,∴|a+b|=5
(2)cos〈a,b〉===.
考点:平面向量数量积的坐标表示、模、夹角.
练习册系列答案
相关题目