题目内容
1.已知数列{an}满足,an+1+an=4n-3(n∈N*).(1)若数列{an}是等差数列,求a1的值;
(2)当a1=2时,求数列{an}的前n项和Sn;
(3)若对任意n∈N*,都有an2+an+12≥20n-15成立,求a1的取值范围.
分析 (1)由等差数列的定义,若数列{an}是等差数列,则an=a1+(n-1)d,an+1=a1+nd.结合an+1+an=4n-3,得即可解得首项a1的值;
(2)由an+1+an=4n-3(n∈N*),用n+1代n得an+2+an+1=4n+1(n∈N*),两式相减,得an+2-an=4,从而得出数列{a2n-1}是首项为a1,公差为4的等差数列,进一步得到数列{a2n}是首项为a2,公差为4的等差数列.然后对n进行分类讨论:①当n为奇数时,②当n为偶数时,分别求和即可;
(3)由(2)知,an=$\left\{\begin{array}{l}{2n-2+{a}_{1},n=2k-1}\\{2n-3-{a}_{1},n=2k}\end{array}\right.$(k∈Z).①当n为奇数时,②当n为偶数时,分别解得a1的取值范围,取交集得答案.
解答 解:(1)若数列{an}是等差数列,则an=a1+(n-1)d,an+1=a1+nd.
由an+1+an=4n-3,得(a1+nd)+[a1+(n-1)d]=4n-3,即2d=4,2a1-d=-3,解得d=2,a1=-$\frac{1}{2}$;
(2)由an+1+an=4n-3(n∈N*),得an+2+an+1=4n+1(n∈N*).
两式相减,得an+2-an=4.
∴数列{a2n-1}是首项为a1,公差为4的等差数列.
数列{a2n}是首项为a2,公差为4的等差数列.
由a2+a1=1,a1=2,得a2=-1.
∴an=$\left\{\begin{array}{l}{2n,n=2k-1}\\{2n-5,n=2k}\end{array}\right.$(k∈Z).
①当n为奇数时,an=2n,an+1=2n-3.Sn=a1+a2+a3+…+an=(a1+a2)+(a3+a4)+…+(an-2+an-1)+an
=1+9+…+(4n-11)+2n=$\frac{\frac{n-1}{2}(1-4n+11)}{2}$+2n=$\frac{2{n}^{2}-3n+5}{2}$.
②当n为偶数时,Sn=a1+a2+a3+…+an=(a1+a2)+(a3+a4)+…+(an-1+an)═1+9+…+(4n-7)=$\frac{2{n}^{2}-3n}{2}$.
∴Sn=$\left\{\begin{array}{l}{\frac{2{n}^{2}-3n+5}{2},n=2k-1}\\{\frac{2{n}^{2}-3n}{2},n=2k}\end{array}\right.$(k∈Z).
(3)由(2)知,an=$\left\{\begin{array}{l}{2n-2+{a}_{1},n=2k-1}\\{2n-3-{a}_{1},n=2k}\end{array}\right.$(k∈Z).
①当n为奇数时,an=2n-2+a1,an+1=2n-1-a1.
由an2+an+12≥20n-15,得a12-a1≥-4n2+16n-10.
令f(n)=-4n2+16n-10=-4(n-2)2+6.
当n=1或n=3时,f(n)max=2,∴a12-a1≥2.
解得a1≥2或a1≤-1.
②当n为偶数时,an=2n-3-a1,an+1=2n+a1.
由an2+an+12≥20n-15,得a12+3a1≥-4n2+16n-12.
令g(n)=-4n2+16n-12=-4(n-2)2+4.
当n=2时,g(n)max=4,∴a12+3a1≥4.
解得a1≥1或a1≤-4.
综上所述,a1的取值范围是(-∞,-4]∪[2,+∞).
点评 本题主要考查等差数列的通项公式、等差数列的前n项和、不等式的解法、数列与不等式的综合等基础知识,考查运算求解能力,考查化归与转化思想,属于中档题.
A. | 点A处 | B. | 线段AD的中点处 | C. | 线段AB的中点处 | D. | 点D处 |