题目内容
已知双曲线的焦点在x轴上,两个顶点间的距离为2,焦点到渐近线的距离为.
(1)求双曲线的标准方程;
(2)写出双曲线的实轴长、虚轴长、焦点坐标、离心率、渐近线方程.
(1)求双曲线的标准方程;
(2)写出双曲线的实轴长、虚轴长、焦点坐标、离心率、渐近线方程.
(1)x2-=1(2)y=±x.
(1)依题意可设双曲线的方程为=1(a>0,b>0),则2a=2,所以a=1.设双曲线的一个焦点为(c,0),一条渐近线的方程为bx-ay=0,则焦点到渐近线的距离d==b=,所以双曲线的方程为x2-=1.
(2)双曲线的实轴长为2,虚轴长为2,焦点坐标为(-,0),(,0),离心率为,渐近线方程为y=±x.
(2)双曲线的实轴长为2,虚轴长为2,焦点坐标为(-,0),(,0),离心率为,渐近线方程为y=±x.
练习册系列答案
相关题目