题目内容

已知向量
a
=(cosα,sinα),
b
=(cosβ,sinβ),若|
a
-
b
|=
2
,则
a
b
的夹角为(  )
A.60°B.90°C.120°D.150°
∵向量
a
=(cosα,sinα),
b
=(cosβ,sinβ),
|
a
|=
cos2α+sin2α
=1,|
b
|=
cos2β+sin2β
=1.
∵|
a
-
b
|=
2

a
2
+
b
2
-2
a
b
=
2

2-2cos<
a
b
=2,
解得cos<
a
b
=0,
a
b
>=90°

故选:B.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网