题目内容

9.已知奇函数f(x)在定义域(-2,2)内是单调递增函数,求满足f(1-m)+f(1-3m)<0的实数m的取值范围.

分析 根据函数奇偶性和单调性的关系进行转化再求解即可.

解答 解:∵奇函数f(x)在定义域(-2,2)内是单调递增函数,
∴由f(1-m)+f(1-3m)<0得f(1-m)<-f(1-3m)=f(3m-1),
∴-2<1-m<3m-1<2,
解得$\frac{1}{2}$<m<1,
即实数m的取值范围是($\frac{1}{2}$,1).

点评 本题主要考查不等式的求解,根据函数奇偶性和单调性之间的关系是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网