题目内容

20.如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,A1B1的中点是P,过点A1作与截面PBC1平行的截面,则截面的面积是2$\sqrt{6}$.

分析 取AB、C1D1的中点M、N,连结A1M、MC、CN、NA1.由已知得四边形A1MCN是平行四边形,连结MN,作A1H⊥MN于H,由题意能求出截面的面积.

解答 解:取AB、C1D1的中点M、N,连结A1M、MC、CN、NA1
由于A1N∥PC1∥MC且A1N=PC1=MC,
∴四边形A1MCN是平行四边形.
又∵A1N∥PC1,A1M∥BP,A1N∩A1M=A1
PC1∩BP=P,
∴平面A1MCN∥平面PBC1
因此,过A1点作与截面PBC1平行的截面是平行四边形.
又连结MN,作A1H⊥MN于H,由于A1M=A1N=$\sqrt{5}$,MN=2$\sqrt{2}$,
则AH=$\sqrt{3}$.
∴${S}_{△{A}_{1}MN}$=$\frac{1}{2}×2\sqrt{2}×\sqrt{3}=\sqrt{6}$,
故${S}_{平行四边形{A}_{1}MCB}$=2${S}_{△{A}_{1}MN}$=2$\sqrt{6}$.
故答案为:$2\sqrt{6}$.

点评 本题考查截面面积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网