题目内容
【题目】已知函数f(x)=,其中x∈[2,+∞).
(1)求f(x)的最小值;
(2)若f(x)>a恒成立,求a的取值范围.
【答案】(1) ;(2) .
【解析】试题分析:(1)先用定义法判断并证明函数的单调性,根据单调性求出函数的最小值;(2) f(x)>a恒成立,只需f(x)min>a,由(1)可得f(x)的最小值为,代入即可.
试题解析:
(1)f(x)=x++2,
任取x1,x2∈[2,+∞),且x1<x2,则f(x1)-f(x2)=(x1-x2).
∵x1<x2,∴x1-x2<0.又∵x1≥2,x2>2,∴x1x2>4,∴1->0.∴f(x1)-f(x2)<0,即f(x1)<f(x2).
故f(x)在[2,+∞)上是增函数.∴当x=2时,f(x)取得最小值为.
(2)∵f(x)的最小值为,∴f(x)>a恒成立,只需f(x)min>a,即a<.
故a的取值范围为.
点睛:本题考查定义法判断函数的单调性,以及恒成立问题转化的求函数的最值. 若函数在区间上单调递增,则时,有,事实上,若,则,这与矛盾,类似地,若在区间上单调递减,则当时有.
【题目】《中华人民共和国个人所得税法》规定,公民全月工资所得不超过3500元的部分不必纳税,超过3500元的部分为全月应纳税所得额。此项税款按下表分段累计计算:
全月应纳税所得额 | 税率(%) |
不超过1500元的部分 | 3 |
超过1500元至4500元的部分 | 10 |
超过4500元至9000元的部分 | 20 |
(1)某人10月份应交此项税款为350元,则他10月份的工资收入是多少?
(2)假设某人的月收入为元, ,记他应纳税为元,求的函数解析式.
【题目】(本小题12分)甲、乙两位学生参加数学竞赛培训,在培训期间,他们参加的5项预赛成绩记录如下:
甲 | 82 | 82 | 79 | 95 | 87 |
乙 | 95 | 75 | 80 | 90 | 85 |
(1)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率;
(2)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?说明理由.
【题目】某DVD光盘销售部每天的房租、人员工资等固定成本为300元,每张DVD光盘的进价是6元,销售单价与日均销售量的关系如表所示:
销售单价(元) | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
日均销售量(张) | 480 | 440 | 400 | 360 | 320 | 280 | 240 |
(1)请根据以上数据作出分析,写出日均销售量P(x)(张)关于销售单价x(元)的函数关系式,并写出其定义域;
(2)问这个销售部销售的DVD光盘销售单价定为多少时才能使日均销售利润最大?最大销售利润是多少?