题目内容
【题目】如图,在三棱锥S一ABC中,SA=AB=AC=BC=SB=SC,O为BC的中点
(1)求证:SO⊥平面ABC
(2)在线段AB上是否存在一点E,使二面角B—SC-E的平面角的余弦值为?若存在,求的值,若不存在,试说明理由
【答案】(1)见解析(2)
【解析】
(1)利用等腰三角形性质,结合勾股定理证明线面垂直。
(2)建立空间直角坐标系,利用两平面的法向量夹角公式即可求得点E的坐标。
(1)∵,O为BC的中点,∴,
设,则,,,
∴,∴,
又∵,∴平面ABC.
(2)以O为原点,以OA所在射线为x轴正半轴,以OB所在射线为y轴正半轴,
以OS所在射线为z轴正半轴建立空间直角坐标系.
则有,,,,.
假设存在点E满足条件,设,
则,
则.
设平面SCE的法向量为,
由,得,故可取.
易得平面SBC的一个法向量为.
所以,,解得或(舍).
所以,当时,二面角的余弦值为.
练习册系列答案
相关题目