题目内容

【题目】已知函数f(x)=Asin(ωx+φ)(其中A>0, )的图象如图所示.

(1)求A,w及φ的值;
(2)若tana=2,求 的值.

【答案】
(1)解:由图知A=2,

T=2( )=p,

∴w=2,

∴f(x)=2sin(2x+φ)

又∵ =2sin( +φ)=2,

∴sin( +φ)=1,

+j= ,φ= +2kπ,

∴φ=


(2)解:由(1)知:f(x)=2sin(2x+ ),

=2sin(2a+ )=2cos2a=4cos2a﹣2

∵tana=2,

∴sina=2cosa,

又∵sin2a+cos2a=1,

∴cos2a=

=


【解析】(1)根据函数图象的最大值和最小值确定A的值,由周期可知ω的值,最后再代入特殊值可确定φ的值.(2)先表示出f(α+ )的表达式,根据tana=2求出cos2a的值代入即可得到答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网