题目内容

随机变量ξ服从二项分布ξ~B(n,p),且Eξ=300,Dξ=200,则P等于
1
3
1
3
分析:根据随机变量符合二项分布,根据二项分布的期望和方差的公式和条件中所给的期望和方差的值,得到关于n和p的方程组,解方程组得到要求的未知量p.
解答:解:∵ξ服从二项分布B~(n,p)
Eξ=300,Dξ=200
∴Eξ=300=np,①;
Dξ=200=np(1-p),②.
可得1-p=
200
300
=
2
3

∴p=1-
2
3
=
1
3

故答案为:
1
3
点评:本题主要考查分布列和期望的简单应用,本题解题的关键是通过解方程组得到要求的变量,注意两个式子相除的做法,本题与求变量的期望是一个相反的过程,但是两者都要用到期望和方差的公式,本题是一个基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网