ÌâÄ¿ÄÚÈÝ
¡÷ABCµÄÈý¸öÄÚ½ÇA¡¢B¡¢CµÄ¶Ô±ßµÄ³¤·Ö±ðΪa¡¢b¡¢c£¬ÓÐÏÂÁÐÁ½¸öÌõ¼þ£º£¨1£©a¡¢b¡¢c³ÉµÈ²îÊýÁУ»£¨2£©a¡¢b¡¢c³ÉµÈ±ÈÊýÁУ¬ÏÖ¸ø³öÈý¸ö½áÂÛ£º£¨1£©0£¼B¡Ü
¦Ð |
3 |
£¨2£©acos2
C |
2 |
A |
2 |
3b |
2 |
£¨3£©1£¼
1+sin2B |
cosB+sinB |
2 |
ÇëÄãÑ¡È¡¸ø¶¨µÄÁ½¸öÌõ¼þÖеÄÒ»¸öÌõ¼þΪÌõ¼þ£¬Èý¸ö½áÂÛÖеÄÁ½¸öΪ½áÂÛ£¬×齨һ¸öÄãÈÏΪÕýÈ·µÄÃüÌ⣬²¢Ö¤Ã÷Ö®£®
£¨I£©×齨µÄÃüÌâΪ£ºÒÑÖª
ÇóÖ¤£º¢Ù
¢Ú
£¨II£©Ö¤Ã÷£º
·ÖÎö£º£¨1£©ÀûÓÃa¡¢b¡¢c³ÉµÈ²îÊýÁпÉÍƶϳö2b=a+c£¬´úÈë¹ØÓÚBµÄÓàÏÒ¶¨ÀíÖÐÀûÓûù±¾²»µÈʽÇóµÃcosBµÄ·¶Î§£¬½ø¶øÇóµÃBµÄ·¶Î§£¬ÔʽµÃÖ¤£®
£¨2£©ÀûÓöþ±¶½Ç¹«Ê½ºÍÓàÏÒ¶¨Àí¶ÔÔʽ½øÐл¯¼òÕûÀíÇóµÃµÈʽ³ÉÁ¢£¬ÔʽµÃÖ¤£®
£¨2£©ÀûÓöþ±¶½Ç¹«Ê½ºÍÓàÏÒ¶¨Àí¶ÔÔʽ½øÐл¯¼òÕûÀíÇóµÃµÈʽ³ÉÁ¢£¬ÔʽµÃÖ¤£®
½â´ð£º½â£º£¨I£©¿ÉÒÔ×齨ÃüÌ⣺¡÷ABCÖУ¬Èôa¡¢b¡¢c³ÉµÈ²îÊýÁУ¬ÇóÖ¤£º¢Ù0£¼B¡Ü
¢Úacos2
+ccos2
=
£»
£¨II£©¢Ù¡ßa¡¢b¡¢c³ÉµÈ²îÊýÁСà2b=a+c£¬
¡àb=
cosB=
=
=
¡Ý
=
ÇÒB¡Ê£¨0£¬¦Ð£©£¬¡à0£¼B¡Ü
¢Úacos2
+ccos2
=a
+c
=
+
=
+
=
¹Ê´ð°¸Îª£ºa¡¢b¡¢c³ÉµÈ²îÊýÁУ¬0£¼B¡Ü
£¬acos2
+ccos2
=
£®
¦Ð |
3 |
¢Úacos2
C |
2 |
A |
2 |
3b |
2 |
£¨II£©¢Ù¡ßa¡¢b¡¢c³ÉµÈ²îÊýÁСà2b=a+c£¬
¡àb=
a+c |
2 |
a2+c2-b2 |
2ac |
a2+c2-(
| ||
2ac |
3(a2+c2)-2ac |
8ac |
6ac-2ac |
8ac |
1 |
2 |
ÇÒB¡Ê£¨0£¬¦Ð£©£¬¡à0£¼B¡Ü
¦Ð |
3 |
¢Úacos2
C |
2 |
A |
2 |
1+cosC |
2 |
1+cosA |
2 |
a+c |
2 |
acosC+ccosA |
2 |
a+c |
2 |
b |
2 |
3b |
2 |
¹Ê´ð°¸Îª£ºa¡¢b¡¢c³ÉµÈ²îÊýÁУ¬0£¼B¡Ü
¦Ð |
3 |
C |
2 |
A |
2 |
3b |
2 |
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁËÊýÁÐÓëÈý½Çº¯ÊýµÄ×ۺϣ¬ÓàÏÒ¶¨ÀíµÄÓ¦Ó㬶þ±¶½ÇµÄ»¯¼òÇóÖµ£®¿¼²éÁËѧÉú¶Ô»ù´¡ÖªÊ¶µÄÀí½âºÍÁé»îÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿