ÌâÄ¿ÄÚÈÝ
4£®ÒÑÖªº¯Êýf£¨x£©ÎªRÉϵÄÆ溯Êý£¬µ±x£¾0ʱ£¬f£¨x£©=$\frac{1}{2}$£¨|x+cos¦Á|+|x+2cos¦Á|+3cos¦Á£©£¨-¦Ð¡Ü¦Á¡Ü¦Ð£©£¬Èô¶ÔÈÎÒâʵÊýx¡ÊR£¬¶¼ÓÐf£¨x-3£©¡Üf£¨x£©ºã³ÉÁ¢£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©A£® | [$\frac{5¦Ð}{6}$£¬¦Ð] | B£® | [-¦Ð£¬-$\frac{2¦Ð}{3}$] | C£® | [-$\frac{5¦Ð}{6}$£¬$\frac{5¦Ð}{6}$] | D£® | [-$\frac{2¦Ð}{3}£¬\frac{2¦Ð}{3}$] |
·ÖÎö µ±x£¾0ʱ£¬f£¨x£©=$\frac{1}{2}$£¨|x+cos¦Á|+|x+2cos¦Á|+3cos¦Á£©£¨-¦Ð¡Ü¦Á¡Ü¦Ð£©£¬·ÖÀàÌÖÂÛ£®ÓÉÓÚº¯Êýf£¨x£©ÊǶ¨ÒåÔÚRÉϵÄÆ溯Êý£¬?x¡ÊR£¬f£¨x-3£©¡Üf£¨x£©£¬¿ÉµÃ6cos¦Á¡Ý3£¬½â³ö¼´¿É£®
½â´ð ½â£º¡ßµ±x£¾0ʱ£¬f£¨x£©=$\frac{1}{2}$£¨|x+cos¦Á|+|x+2cos¦Á|+3cos¦Á£©£¨-¦Ð¡Ü¦Á¡Ü¦Ð£©£¬
¡àµ±0£¼x¡Ü-cos¦Áʱ£¬f£¨x£©=$\frac{1}{2}$£¨-x-cos¦Á-x-2cos¦Á+3cos¦Á£©=-x£»
µ±-cos¦Á£¼x¡Ü-2cos¦Áʱ£¬f£¨x£©=$\frac{1}{2}$£¨x+cos¦Á-x-2cos¦Á+3cos¦Á£©=cos¦Á£»
µ±x£¾-2cos¦Áʱ£¬f£¨x£©=$\frac{1}{2}$£¨x+cos¦Á+x+2cos¦Á+3cos¦Á£©=x+3cos¦Á£®
ÓÉÓÚº¯Êýf£¨x£©ÊǶ¨ÒåÔÚRÉϵÄÆ溯Êý£¬?x¡ÊR£¬f£¨x-3£©¡Üf£¨x£©£¬
¡à6cos¦Á¡Ý3£¬
¡àcos¦Á¡Ý-$\frac{1}{2}$£¬
½âµÃ¦Á¡Ê[-$\frac{2¦Ð}{3}$£¬$\frac{2¦Ð}{3}$]£®
¹ÊÑ¡£ºD£®
µãÆÀ ±¾Ì⿼²éÁ˺¯ÊýÆæżÐÔ¡¢ÖÜÆÚÐÔ£¬¿¼²éÁË·ÖÀàÌÖÂÛµÄ˼Ïë·½·¨£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
A£® | $-\frac{2}{3}$»ò-2 | B£® | $-\frac{2}{3}$»ò$4+2\sqrt{5}$ | C£® | $-\frac{2}{3}$»ò$4-2\sqrt{5}$ | D£® | $-\frac{2}{3}$»ò$4+2\sqrt{5}$»ò$4-2\sqrt{5}$ |
A£® | f£¨x£©=x3 | B£® | f£¨x£©=-x-1 | C£® | f£¨x£©=log2x | D£® | f£¨x£©=2x |