ÌâÄ¿ÄÚÈÝ
14£®¼Ç¼¯ºÏT={0£¬1£¬2£¬3£¬4£¬5£¬6}£¬M=$\{\frac{a_1}{7}+\frac{a_2}{7^2}+\frac{a_3}{7^3}+\frac{a_4}{7^4}|{a_i}¡ÊT£¬i=1£¬2£¬3£¬4\}$£¬½«MÖеÄÔªËØ°´´Ó´óµ½Ð¡µÄ˳ÐòÅųÉÊýÁÐ{bi}£¬²¢½«bi°´ÈçϹæÔò±êÔÚƽÃæÖ±½Ç×ø±êϵµÄ¸ñµã£¨ºá¡¢×Ý×ø±ê¾ùΪÕûÊýµÄµã£©´¦£ºµã£¨1£¬0£©´¦±êb1£¬µã£¨1£¬-1£©´¦±êb2£¬µã£¨0£¬-1£©´¦±êb3£¬µã£¨-1£¬-1£©´¦±êb4£¬µã£¨-1£¬0£©±êb5£¬µã£¨-1£¬1£©´¦±êb6£¬µã£¨0£¬1£©´¦±êb7£¬¡£¬ÒÔ´ËÀàÍÆ£®£¨¢ñ£©±êb50´¦µÄ¸ñµã×ø±êΪ£¨4£¬2£©£»
£¨¢ò£© b50=$\frac{6}{7}+\frac{5}{7^2}+\frac{6}{7^3}+\frac{6}{7^4}$£®
·ÖÎö £¨¢ñ£©ÓÉͼÐΣ¬¸ñµãµÄÁ¬Ïß³ÊÖÜÆÚÐÔ¹ýºáÖᣬÑо¿Ã¿Ò»ÖܵĸñµãÊý¼°Ã¿Ò»ÐÐÿһÁиñµãÊýµÄ±ä»¯£¬µÃ³ö¹æÂɼ´¿É£®
£¨¢ò£©¸ù¾ÝÌâÒ⣬½«MÖеÄÔªËØ°´´Ó´óµ½Ð¡µÄ˳ÐòÅųÉÊýÁÐbi£¬·Ö×Ó·Ö±ðΪ6£¬6£¬6£¬6£»6£¬6£¬6£¬5£»6£¬6£¬6£¬4£»6£¬6£¬6£¬3£»6£¬6£¬6£¬2£¬¡£¬¿ÉµÃ½áÂÛ£®
½â´ð ½â£º£¨¢ñ£©´ÓºáÖáÉϵĵ㿪ʼµã¿ªÊ¼¼ÆÊý£¬´Ób1¿ªÊ¼¼ÆÊýµÚÒ»Öܹ²9¸ö¸ñµã£¬³ýÁËËĸö¶¥µãÍâÿһÐеÚÒ»Áи÷ÓÐÒ»¸ö¸ñµã£¬Íâ¼ÓÒ»¸öÑÓÉìµãµÚ¶þÖÜ´Ób10¿ªÊ¼¼Æ£¬³ýÁËËĸö¶¥µãµÄËĸö¸ñµãÍ⣬ÿһÐÐÿһÁÐÓÐÈý¸ö¸ñµã£¬Íâ¼ÓÒ»¸öÑÓÉìµã¹²17¸ö£¬¹ÕÍäÏòϵ½´ïºáÖáÇ°µÄ¸ñµã²¹¿ªÊ¼µãµÄÉÏÃæÒÔ²¹×ãÆðʼµãËùÔÚÁеĸöÊý£¬
ÓÉ´ËÆä¹æÂÉÊǺóÒ»ÖÜÊÇÇ°Ò»ÖܵĸñµãÊý¼ÓÉÏ8¡Á£¨ÖÜÊý-1£©£®
ÁîÖÜÊýΪt£¬¸÷ÖܵĵãÊýºÍΪSt=9+8£¨t-1£©=8t+1£¬Ã¿Ò»ÐУ¨»òÁУ©³ýÁ˶˵ãÍâµÄµãÊýÓëÖÜÊýµÄ¹ØϵÊÇb=2t-1£»
ÓÉÓÚS1=9£¬S2=17£¬S3=25£¬S4=33£¬ÓÉÓÚ9+17+25=51£¬µÚ50¸ö¸ñµãÓ¦ÔÚµÚÈýÖܵĵ¹ÊýµÚ¶þ¸öµãÉÏ£¬¹ÊÆä×ø±êΪ£¨4£¬2£©£®
£¨¢ò£©¸ù¾ÝÌâÒ⣬½«MÖеÄÔªËØ°´´Ó´óµ½Ð¡µÄ˳ÐòÅųÉÊýÁÐbi£¬·Ö×Ó·Ö±ðΪ6£¬6£¬6£¬6£»6£¬6£¬6£¬5£»6£¬6£¬6£¬4£»6£¬6£¬6£¬3£»6£¬6£¬6£¬2£¬¡£¬ËùÒÔb50=$\frac{6}{7}+\frac{5}{7^2}+\frac{6}{7^3}+\frac{6}{7^4}$£®
¹Ê´ð°¸Îª£º£¨4£¬2£©£»$\frac{6}{7}+\frac{5}{7^2}+\frac{6}{7^3}+\frac{6}{7^4}$
µãÆÀ ±¾Ì⿼²é¹éÄÉÍÆÀí£¬¹éÄÉÍÆÀíÊÇÓÉÌØÊâµ½Ò»°ãµÄÍÆÀí£¬Çó½â±¾ÌâµÄ¹Ø¼üÊÇ´ÓÌØÊâÊý¾ÝÏÂÊÖ£¬ÕÒ³ö¹æÂÉ£¬×ܽá³öËùÒªµÄ±í´ïʽ£®
A£® | [$\frac{5¦Ð}{6}$£¬¦Ð] | B£® | [-¦Ð£¬-$\frac{2¦Ð}{3}$] | C£® | [-$\frac{5¦Ð}{6}$£¬$\frac{5¦Ð}{6}$] | D£® | [-$\frac{2¦Ð}{3}£¬\frac{2¦Ð}{3}$] |
A£® | 1¸ö | B£® | 2¸ö | C£® | 3¸ö | D£® | 4¸ö |
A£® | 1+2i | B£® | 1-2i | C£® | -1+2i | D£® | -1-2i |