题目内容
已知函数同时满足:①不等式 的解集有且只有一个元素;②在定义域内存在,使得不等式成立 设数列的前项和为
(1)求数列的通项公式;
(2)设各项均不为零的数列中,所有满足的正整数的个数称为这个数列的变号数,令(为正整数),求数列的变号数
(1);(2)3
解析试题分析:(1)由一元二次不等式的解集有且只有一个元素可判断对应方程的判别式等于零,再根据单调性确定参数的值,然后求数列的通项公式;(2)根据新定义,代入解不等式即可,需要注意的特殊性
试题解析:(1)由①的解集有且只有一个元素知
或 4分
当时,函数在上递增,此时不满足条件② 6分
综上可知
8分
(2)由条件可知
当时,令或
所以或 13分
又时,也有 15分
综上可得数列的变号数为3 16分
考点:二次函数,数列
练习册系列答案
相关题目