题目内容

【题目】在平面直角坐标系中,直线与抛物线相交于不同的两点.

(1)如果直线过抛物线的焦点,求的值;

(2)如果,证明直线必过一定点,并求出该定点.

【答案】(Ⅰ)-3(Ⅱ)过定点,证明过程详见解析.

【解析】

根据抛物线的方程得到焦点的坐标,设出直线与抛物线的两个交点和直线方程,是直线的方程与抛物线方程联立,得到关于y的一元二次方程,根据根与系数的关系,表达出两个向量的数量积.

设出直线的方程,同抛物线方程联立,得到关于y的一元二次方程,根据根与系数的关系表示出数量积,根据数量积等于,做出数量积表示式中的b的值,即得到定点的坐标.

由题意:抛物线焦点为

l:代入抛物线消去x得,

,设

l:代入抛物线,消去x

直线l过定点

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网