题目内容
【题目】已知函数f(x)=|2x﹣a|+|2x+3|,g(x)=|x﹣1|+2.
(1)解不等式|g(x)|<5;
(2)若对任意x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,求实数a的取值范围.
【答案】
(1)解:由||x﹣1|+2|<5,得﹣5<|x﹣1|+2<5
∴﹣7<|x﹣1|<3,
得不等式的解为﹣2<x<4
(2)解:因为任意x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,
所以{y|y=f(x)}{y|y=g(x)},
又f(x)=|2x﹣a|+|2x+3|≥|(2x﹣a)﹣(2x+3)|=|a+3|,
g(x)=|x﹣1|+2≥2,所以|a+3|≥2,解得a≥﹣1或a≤﹣5,
所以实数a的取值范围为a≥﹣1或a≤﹣5
【解析】(1)利用||x﹣1|+2|<5,转化为﹣7<|x﹣1|<3,然后求解不等式即可.(2)利用条件说明{y|y=f(x)}{y|y=g(x)},通过函数的最值,列出不等式求解即可.
练习册系列答案
相关题目