题目内容

如图,直二面角D-AB-E中,四边形ABCD是边长为2的正方形,AE=EB,F为CE上的点,且BF⊥平面ACE.
(1)求证:AE⊥平面BCE;
(2)求三棱锥E-ABC的体积.
分析:(1)欲证AE⊥平面BCE,由题设条件知可先证BF⊥AE,CB⊥AE,再结合线面垂直的判定定理得出线面垂直即可;
(2)由题设,底面三角形ACD的面积不难求出,关键是高的求法,可以过点E作EO⊥AB交AB于点O,再求得OE的长度,最后用锥体体积公式可求出三棱锥E-ABC的体积.
解答:解:(1)∵BF⊥平面ACE.∴BF⊥AE
∵二面角D-AB-E为直二面角.且CB⊥AB.
∴CB⊥平面ABE∴CB⊥AE
∵BF∩CB=B
∴AE⊥平面BCE
(2)过点E作EO⊥AB交AB于点O,OE=1
∵二面角D-AB-E为直二面角,
∴EO⊥平面ABCD
VE-ACD=
1
3
S△ACD•EO=
1
3
1
2
•AD•DC•EO=
2
3
点评:本题考查了用线面垂直的判定定理证明线面垂直,以及用二面角的定义求二面角,求棱锥的体积,本题涉及到的知识与技巧较多,综合性较强,在解题过程中要注意体会问题的转化方向,及解决方法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网