题目内容
求下列函数的单调递增区间:
(1)y=(;(2)y=2.
(1)y=(;(2)y=2.
(1)y=(的单调递增区间为[,+∞)(2)函数y=2的单调递增区间是[,+∞)
(1)函数的定义域为R.
令u=6+x-2x2,则y=(.
∵二次函数u=6+x-2x2的对称轴为x=,
在区间[,+∞)上,u=6+x-2x2是减函数,
又函数y=(u是减函数,
∴函数y=(在[,+∞)上是增函数.
故y=(的单调递增区间为[,+∞).
(2)令u=x2-x-6,则y=2u,
∵二次函数u=x2-x-6的对称轴是x=,
在区间[,+∞)上u=x2-x-6是增函数.
又函数y=2u为增函数,
∴函数y=2在区间[,+∞)上是增函数.
故函数y=2的单调递增区间是[,+∞).
令u=6+x-2x2,则y=(.
∵二次函数u=6+x-2x2的对称轴为x=,
在区间[,+∞)上,u=6+x-2x2是减函数,
又函数y=(u是减函数,
∴函数y=(在[,+∞)上是增函数.
故y=(的单调递增区间为[,+∞).
(2)令u=x2-x-6,则y=2u,
∵二次函数u=x2-x-6的对称轴是x=,
在区间[,+∞)上u=x2-x-6是增函数.
又函数y=2u为增函数,
∴函数y=2在区间[,+∞)上是增函数.
故函数y=2的单调递增区间是[,+∞).
练习册系列答案
相关题目