题目内容
已知f (
)=
,则f (x)的解析式为
______.
1-x |
1+x |
1-x2 |
1+x2 |
令=
,解得x=
代入f (
)=
,
得f(t)=
=
=
=
(t≠-1)
故f (x)=
,(x≠-1)
故答案为f (x)=
,(x≠-1)
1-x |
1+x |
1-t |
1+t |
代入f (
1-x |
1+x |
1-x2 |
1+x2 |
得f(t)=
1-(
| ||
1+(
|
(1+t)2-(1-t) 2 |
(1+t) 2+(1-t) 2 |
4t |
2+2t2 |
2t |
1+t2 |
故f (x)=
2x |
1+x2 |
故答案为f (x)=
2x |
1+x2 |
练习册系列答案
相关题目
已知f(
)=
,则f(x)的解析式为( )
1-x |
1+x |
1-x2 |
1+x2 |
A、f(x)=
| ||
B、f(x)=-
| ||
C、f(x)=
| ||
D、f(x)=-
|