题目内容
【题目】已知函数f(x)=x﹣alnx,g(x)=﹣ ,其中a∈R
(1)设函数h(x)=f(x)﹣g(x),求函数h(x)的单调区间;
(2)若存在x0∈[1,e],使得f(x0)<g(x0)成立,求a的取值范围.
【答案】
(1)解:函数h(x)=x﹣alnx+ 的定义域为(0,+∞),
h′(x)=1﹣ ﹣ = ,
①当1+a≤0,即a≤﹣1时,
h′(x)>0,
故h(x)在(0,+∞)上是增函数;
②当1+a>0,即a>﹣1时,
x∈(0,1+a)时,h′(x)<0;x∈(1+a,+∞)时,h′(x)>0;
故h(x)在(0,1+a)上是减函数,在(1+a,+∞)上是增函数
(2)解:由(1)令h(x0)=f(x0)﹣g(x0),x0∈[1,e],
①当a≤﹣1时,
存在x0∈[1,e](e=2.718…),使得h(x0)<0成立可化为
h(1)=1+1+a<0,
解得,a<﹣2;
②当﹣1<a≤0时,
存在x0∈[1,e](e=2.718…),使得h(x0)<0成立可化为
h(1)=1+1+a<0,解得,a<﹣2;
③当0<a≤e﹣1时,
存在x0∈[1,e](e=2.718…),使得h(x0)<0成立可化为
h(1+a)=1+a﹣aln(1+a)+1<0,无解;
④当e﹣1<a时,
存在x0∈[1,e](e=2.718…),使得h(x0)<0成立可化为
h(e)=e﹣a+ <0,
解得,a> ;
综上所述,
a的取值范围为(﹣∞,﹣2)∪( ,+∞)
【解析】(1)先求函数h(x)的定义域,求出函数h(x)的导数,从而讨论判断函数的单调性;(2)分类讨论函数的单调性,从而化存在性问题为最值问题,从而解得.
【考点精析】通过灵活运用利用导数研究函数的单调性和函数的最大(小)值与导数,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数在上的最大值与最小值的步骤:(1)求函数在内的极值;(2)将函数的各极值与端点处的函数值,比较,其中最大的是一个最大值,最小的是最小值即可以解答此题.