题目内容
求由抛物线y2=x-1与其在点(2,1),(2,-1)处的切线所围成的面积.
解析
已知常数,向量,经过定点以为方向向量的直线与经过定点以为方向向量的直线相交于,其中,(1)求点的轨迹的方程;(2)若,过的直线交曲线于两点,求的取值范围。
已知椭圆的中心为坐标原点,短轴长为2,一条准线的方程为l:x=2.(1)求椭圆的标准方程.(2)设O为坐标原点,F是椭圆的右焦点,点M是直线l上的动点,过点F作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值.
已知椭圆的右焦点为,设左顶点为A,上顶点为B且,如图.(1)求椭圆的方程;(2)若,过的直线交椭圆于两点,试确定的取值范围.
已知中心在原点的双曲线C的一个焦点是F1(一3,0),一条渐近线的方程是(1)求双曲线C的方程;(2)若以k(k≠0)为斜率的直线与双曲线C相交于两个不同的点M, N,且线段MN的垂直平分线与两坐标轴围成的三角形的面积为,求k的取值范围。
已知椭圆E:=1(a>b>0),F1(-c,0),F2(c,0)为椭圆的两个焦点,M为椭圆上任意一点,且|MF1|,|F1F2|,|MF2|构成等差数列,点F2(c,0)到直线l:x=的距离为3.(1)求椭圆E的方程;(2)若存在以原点为圆心的圆,使该圆的任意一条切线与椭圆E恒有两个交点A,B,且⊥,求出该圆的方程.
已知椭圆与的离心率相等. 直线与曲线交于两点(在的左侧),与曲线交于两点(在的左侧),为坐标原点,.(1)当=,时,求椭圆的方程;(2)若,且和相似,求的值.
已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,点A在椭圆C上,·=0,3||·||=-5·,||=2,过点F2且与坐标轴不垂直的直线交椭圆于P,Q两点.(1)求椭圆C的方程;(2)线段OF2(O为坐标原点)上是否存在点M(m,0),使得·=·?若存在,求出实数m的取值范围;若不存在,说明理由.
设,分别是椭圆:的左、右焦点,过作倾斜角为的直线交椭圆于,两点, 到直线的距离为,连结椭圆的四个顶点得到的菱形面积为.(1)求椭圆的方程;(2)过椭圆的左顶点作直线交椭圆于另一点, 若点是线段垂直平分线上的一点,且满足,求实数的值.