题目内容
设数列{an}的前n项和为Sn,且Sn=2an-1(n∈N+).(Ⅰ)求证数列{an}是等比数列,并求{an}的通项公式;
(Ⅱ)设数列{nan}的前n项和为Tn,求Tn的表达式;
(Ⅲ)对任意n∈N+,试比较
Tn | 2 |
分析:(Ⅰ)由Sn=2an-1和Sn+1=2an+1-1相减得an+1=2an+1-2an,所以
=2,由此可求出数列{an}的通项公式,
(Ⅱ)首先求出数列{nan}的前n项和为Tn=1•20+2•21+3•22+…+(n-1)•2n-2+n•2n-1,再写出2Tn=1•2+2•22+…+(n-2)•2n-2+(n-1)•2n-1+n•2n,两式相减即可求出Tn的表达式,
(Ⅲ)首先求出Sn,然后讨论当n=1、n=2和n≥3时,比较
-Sn的值的正负.
an+1 |
an |
(Ⅱ)首先求出数列{nan}的前n项和为Tn=1•20+2•21+3•22+…+(n-1)•2n-2+n•2n-1,再写出2Tn=1•2+2•22+…+(n-2)•2n-2+(n-1)•2n-1+n•2n,两式相减即可求出Tn的表达式,
(Ⅲ)首先求出Sn,然后讨论当n=1、n=2和n≥3时,比较
Tn |
2 |
解答:解:(Ⅰ)由Sn=2an-1得Sn+1=2an+1-1,二式相减得:an+1=2an+1-2an,
∴
=2,∴数列{an}是公比为2的等比数列,(3分)
又∵S1=2a1-1,∴a1=1,∴an=2n-1.(5分)
(Ⅱ)∵nan=n2n-1,
∴Tn=1•20+2•21+3•22+…+(n-1)•2n-2+n•2n-1①
2Tn=1•2+2•22+…+(n-2)•2n-2+(n-1)•2n-1+n•2n,②(7分)
①-②得-Tn=1+2+4+…+2n-2+2n-1-n•2n=
-n2n=2n-1-n2n,
∴Tn=n2n-2n+1=(n-1)2n+1.(9分)
(Ⅲ)∵Sn=
=2n-1,
∴
-Sn=
(n2n-2n+1)-(2n-1)=(n-3)2n-1+
,(11分)
∴当n=1时,
-S1=-
<0,当n=2时,
-S2=-
<0,;
当n≥3时,
-Sn>0.(13分)
综上,当n=1或n=2时,
<Sn;当n≥3时,
>Sn.(14分)
∴
an+1 |
an |
又∵S1=2a1-1,∴a1=1,∴an=2n-1.(5分)
(Ⅱ)∵nan=n2n-1,
∴Tn=1•20+2•21+3•22+…+(n-1)•2n-2+n•2n-1①
2Tn=1•2+2•22+…+(n-2)•2n-2+(n-1)•2n-1+n•2n,②(7分)
①-②得-Tn=1+2+4+…+2n-2+2n-1-n•2n=
1-2n |
1-2 |
∴Tn=n2n-2n+1=(n-1)2n+1.(9分)
(Ⅲ)∵Sn=
1-2n |
1-2 |
∴
Tn |
2 |
1 |
2 |
3 |
2 |
∴当n=1时,
T1 |
2 |
1 |
2 |
T2 |
2 |
1 |
2 |
当n≥3时,
Tn |
2 |
综上,当n=1或n=2时,
Tn |
2 |
Tn |
2 |
点评:本题主要考查等比数列的求和与等比关系的确定,解答本题的关键是熟练掌握等比数列的性质,并熟练掌握数列的求和公式,本题难度不是很大.
练习册系列答案
相关题目