题目内容

已知是定义在上的单调函数,且对任意的,都有,则方程的解所在的区间是              (     )

A.    B. C. D. 

C

解析试题分析:根据题意,对任意的x∈,都有,又由f(x)是定义在上的单调函数,则为定值,设t=,则,又由f(t)=3,即log2t+t=3,解可得,t=2;则。因为,所以,令,因为,所以的零点在区间,即方程的解所在的区间是
考点:根的存在性及根的个数的判断;对数函数的图像与性质的综合应用;零点存在性定理。
点评:本题注意考查利用零点存在性定理判断函数的零点及函数零点与方程根的关系的应用,解题的关键点和难点是求出f(x)的解析式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网