题目内容
19.已知数列{an}的前n项和为Sn,且满足a1=$\frac{1}{2}$,an+2Sn•Sn-1=0(n≥2).(1)问:数列{$\frac{1}{{S}_{n}}$}是否为等差数列?并证明你的结论;
(2)求Sn和an;
(3)求证:S12+S22+S32+…+Sn2≤$\frac{1}{2}$-$\frac{1}{4n}$.
分析 (1)由an+2Sn•Sn-1=0(n≥2),可得Sn-Sn-1+2Sn•Sn-1=0,化为$\frac{1}{{S}_{n}}-\frac{1}{{S}_{n-1}}$=2,即可得出;
(2)由(1)可得:$\frac{1}{{S}_{n}}$=2+2(n-1)=2n,再利用递推式即可得出.
(3)利用${S}_{n}^{2}$=$\frac{1}{4{n}^{2}}$<$\frac{1}{4n(n-1)}$=$\frac{1}{4}(\frac{1}{n-1}-\frac{1}{n})$(n≥2),即可证明.
解答 (1)解:∵an+2Sn•Sn-1=0(n≥2),
∴Sn-Sn-1+2Sn•Sn-1=0,
化为$\frac{1}{{S}_{n}}-\frac{1}{{S}_{n-1}}$=2,
∴数列$\left\{{\frac{1}{S_n}}\right\}$是等差数列,首项为2,公差为2;
(2)解:由(1)可得:$\frac{1}{{S}_{n}}$=2+2(n-1)=2n,
∴${S_n}=\frac{1}{2n}$;
∴当n≥2时,an=Sn-Sn-1=$\frac{1}{2n}-\frac{1}{2(n-1)}$=$-\frac{1}{2n(n-1)}$.
∴${a_n}=\left\{\begin{array}{l}\frac{1}{2}(n=1)\\-\frac{1}{2n(n-1)}(n≥2)\end{array}\right.$.
(3)证明:∵${S}_{n}^{2}$=$\frac{1}{4{n}^{2}}$<$\frac{1}{4n(n-1)}$=$\frac{1}{4}(\frac{1}{n-1}-\frac{1}{n})$(n≥2),
∴S12+S22+S32+…+Sn2≤$\frac{1}{4}$+$\frac{1}{4}$$[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n-1}-\frac{1}{n})]$=$\frac{1}{2}$-$\frac{1}{4n}$.
∴S12+S22+S32+…+Sn2≤$\frac{1}{2}$-$\frac{1}{4n}$.
点评 本题考查了“裂项求和”、等差数列的通项公式、递推式的应用,考查了推理能力与计算能力,属于中档题.
A. | $\sqrt{2}$-1 | B. | $\sqrt{2}$+1 | C. | $\sqrt{2}$ | D. | 2$\sqrt{2}$ |