题目内容

精英家教网如图,椭圆
x2
a2
+
y2
b 
=1(a>b>0)与过点A(2,0)B(0,1)的直线有且只有一个公共点T,且椭圆的离心率e=
3
2

(Ⅰ)求椭圆方程;
(Ⅱ)设F1、F2分别为椭圆的左、右焦点,求证:|AT|2=
1
2
|AF1||AF2|
分析:(Ⅰ)先写出过A、B的直线方程,因为由题意得
x2+y2
a2+b2
=1
y=-
1
2
x+1
有惟一解.消去y得:(b2+
1
4
a2)x2-a2x+a2b2=0
有惟一解,
利用其根的判别式等于0,即可求得a,b的值,从而得到椭圆方程;
(Ⅱ)由(Ⅰ)得c=
6
2
,所以F1(-
6
2
,0),F2(
6
2
,0)
x2+y2
a2+b2
=1
y=-
1
2
x+1
解得x1=x2=1,接下来利用距离公式求得线段的长,从而证得|AT|2=
1
2
|AF1|•|AF2|
解答:解:(Ⅰ)过A、B的直线方程为
x
2
+y=1

因为由题意得
x2+y2
a2+b2
=1
y=-
1
2
x+1
有惟一解.
(b2+
1
4
a2)x2-a2x+a2b2=0
有惟一解,
所以△=a2b2(a2+4b2-4)=0(ab≠0),,
故(a2+4b2-4)=0
又因为c=
3
2
,即
a2-b2
a2
=
3
4

所以a2=4b2
从而得a2=2,b2=
1
2

故所求的椭圆方程为
x2
2
+2y2=1

(Ⅱ)由(Ⅰ)得c=
6
2

所以F1(-
6
2
,0),F2(
6
2
,0)

x2+y2
a2+b2
=1
y=-
1
2
x+1
解得x1=x2=1,,
因此T=(1,
1
2
)

从而|AT|2=
5
4

因为|AF1|•|AF2|=
5
2

所以|AT|2=
1
2
|AF1|•|AF2|
点评:本小题主要考查直线与圆锥曲线的综合问题、直线方程、椭圆方程等基础知识,考查运算求解能力、方程思想.属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网