题目内容

13.在△ABC中,角A,B,C所对的边分别为a,b,c且csinB=$\sqrt{3}$bcosC=3.
(1)求角C;
(2)若△ABC的面积为9$\sqrt{3}$,求边c.

分析 (1)由正弦定理化简已知等式可得tanC=$\sqrt{3}$,结合范围C∈(0,π),即可解得C的值.
(2)由已知及三角形面积公式可求a,由(1)得b的值,由余弦定理可求c的值.

解答 解:(1)由csinB=$\sqrt{3}$bcosC,得
sinCsinB=$\sqrt{3}$sinBcosC即sinC=$\sqrt{3}$cosC,(3分)
∴tanC=$\sqrt{3}$,
因为在△ABC中,C∈(0,π),
所以 C=$\frac{π}{3}$.(6分)
(2)由S△ABC=$\frac{1}{2}$acsinB=$\frac{3}{2}a$=9$\sqrt{3}$,得a=6$\sqrt{3}$,(8分)
由(1)C=$\frac{π}{3}$   得$\sqrt{3}$bcos$\frac{π}{3}$=3,b=2$\sqrt{3}$,(10分)
由c=$\sqrt{{a}^{2}+{b}^{2}-2abcosC}$
得c=$\sqrt{108+12-2×6\sqrt{3}×2\sqrt{3}cos\frac{π}{3}}$=$\sqrt{84}$=2$\sqrt{21}$.  (12分)

点评 本题主要考查了正弦定理,余弦定理,三角形面积公式在解三角形中的应用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网