题目内容

已知函数f(x)=sin(
π
2
x-
π
6
)-2cos2
π
4
x+1
,函数g(x)与函数f(x)图象关于y轴对称.
(Ⅰ)当x∈[0,2]时,求g(x)的值域及单调递减区间
(Ⅱ)若g(x0-1)=
3
3
x0∈(-
5
3
,-
2
3
)
求sinπx0值.
分析:(Ⅰ)利用两角和与差的正弦及二倍角的余弦可将f(x)化简为f(x)=
3
sin(
π
2
x-
π
3
),利用又g(x)与f(x)图象关于y轴对称,可求得g(x)=-
3
sin(
π
2
x+
π
3
),从而利用正弦函数的单调性与定义域、值域可求得当x∈[0,2]时,求g(x)的值域及单调递减区间;
(Ⅱ)依题意,可求得cos(
π
2
x0+
π
3
)=
1
3
,利用二倍角的可得cos(πx0+
3
)=-
7
9
,进一步可求得πx0+
3
∈(-π,0),sin(πx0+
3
)=-
4
2
9
,于是可求sinπx0值.
解答:解:(Ⅰ)f(x)=sin(
π
2
x-
π
6
)-2cos2
π
4
+1
=sin
π
2
x•
3
2
-cos
π
2
x•
1
2
-2•
1+cos
π
2
x
2
+1
=
3
2
sin
π
2
x-
3
2
cos
π
2
x
=
3
1
2
sin
π
2
x-
3
2
cos
π
2
x)
=
3
sin(
π
2
x-
π
3
),
又g(x)与f(x)图象关于y轴对称,
得g(x)=f(-x)=
3
sin(-
π
2
x-
π
3
)=-
3
sin(
π
2
x+
π
3
),
当x∈[0,2]时,得
π
2
x+
π
3
∈[
π
3
3
],
得sin(
π
2
x+
π
3
)∈[-
3
2
,1],
即g(x)∈[-
3
3
2
],
g(x)单调递减区间满足2kπ-
π
2
π
2
x+
π
3
≤2kπ+
π
2
,k∈Z,
得4k-
5
3
≤x≤4k+
1
3
,k∈Z,
取k=0,得-
5
3
≤x≤
1
3
,又x∈[0,2],g(x)单调递减区间为[0,
1
3
].
(Ⅱ)由(Ⅰ)知g(x0-1)=-
3
sin[
π
2
(x0-1)+
π
3
]
=
3
sin[
π
2
-(
π
2
x0+
π
3
)]
=
3
cos(
π
2
x0+
π
3

=
3
3

得cos(
π
2
x0+
π
3
)=
1
3

由于cos(πx0+
3
)=2cos2(
π
2
x0+
π
3
)
-1=
2
9
-1=-
7
9

而x0∈(-
5
3
,-
2
3
),
∴πx0+
3
∈(-π,0),
∴sin(πx0+
3
)=-
1-cos2(
π
2
x0+
π
3
)
=-
4
2
9

sin(πx0)=sin[(πx0+
3
)-
3
]
=sin(πx0+
3
)cos
3
-cos(πx0+
3
)sin
3

=-
4
2
9
(-
1
2
)-(-
7
9
)×
3
2

=
4
2
+7
3
18
点评:本题考查两角和与差的正弦及二倍角的余弦,考查正弦函数的单调性与最值,突出考查三角函数性质与运算的综合应用,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网