题目内容
(理)设函数![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183226500477258/SYS201310241832265004772019_ST/0.png)
(1)当a=2时,用函数单调性定义求f(x)的单调递减区间
(2)若连续掷两次骰子(骰子六个面上分别标以数字1,2,3,4,5,6)得到的点数分别作为a和b,求f(x)>b2恒成立的概率.
【答案】分析:(1)利用函数单调性定义求单调区间,可先判断其单调性,再用定义证明,证明时需经过设、差、变、判、结五步解决;
(2)先由f(x)>b2恒成立,可知f(x)的最小值大于b2,可得a、b间的不等关系,再利用古典概型公式,用列举法得目标事件在基本事件总数中的比例即可
解答:解:(1)![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183226500477258/SYS201310241832265004772019_DA/0.png)
根据耐克函数的性质,
的单调递减区间是
,证明如下:
设任意
,
则
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183226500477258/SYS201310241832265004772019_DA/5.png)
∵
∴![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183226500477258/SYS201310241832265004772019_DA/7.png)
∴f(x1)-f(x2)>0
所以
的单调递减区间是![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183226500477258/SYS201310241832265004772019_DA/9.png)
(2)∵![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183226500477258/SYS201310241832265004772019_DA/10.png)
∴16a>b4
基本事件总数为6×6=36,
当a=1时,b=1;
当a=2,3,4,5时,b=1,2,共2×4=8种情况;
当a=6时,b=1,2,3;
目标事件个数为1+8+3=12.因此所求概率为
.
点评:本题综合考查了函数单调性的定义及证明方法,函数、不等式与概率的综合,解题时要认真体会函数问题是怎样与计数概率联系起来的
(2)先由f(x)>b2恒成立,可知f(x)的最小值大于b2,可得a、b间的不等关系,再利用古典概型公式,用列举法得目标事件在基本事件总数中的比例即可
解答:解:(1)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183226500477258/SYS201310241832265004772019_DA/0.png)
根据耐克函数的性质,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183226500477258/SYS201310241832265004772019_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183226500477258/SYS201310241832265004772019_DA/2.png)
设任意
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183226500477258/SYS201310241832265004772019_DA/3.png)
则
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183226500477258/SYS201310241832265004772019_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183226500477258/SYS201310241832265004772019_DA/5.png)
∵
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183226500477258/SYS201310241832265004772019_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183226500477258/SYS201310241832265004772019_DA/7.png)
∴f(x1)-f(x2)>0
所以
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183226500477258/SYS201310241832265004772019_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183226500477258/SYS201310241832265004772019_DA/9.png)
(2)∵
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183226500477258/SYS201310241832265004772019_DA/10.png)
∴16a>b4
基本事件总数为6×6=36,
当a=1时,b=1;
当a=2,3,4,5时,b=1,2,共2×4=8种情况;
当a=6时,b=1,2,3;
目标事件个数为1+8+3=12.因此所求概率为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183226500477258/SYS201310241832265004772019_DA/11.png)
点评:本题综合考查了函数单调性的定义及证明方法,函数、不等式与概率的综合,解题时要认真体会函数问题是怎样与计数概率联系起来的
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目