题目内容
【题目】已知抛物线的焦点F与椭圆的右焦点重合,过焦点F的直线l交抛物线于A,B两点.
(1)求抛物线C的方程;
(2)记抛物线C的准线与x轴的交点为H,试问:是否存在,使得,且成立?若存在,求实数的取值范围;若不存在,请说明理由.
【答案】(1);(2)存在;
【解析】
(1)根据抛物线的焦点,结合椭圆的焦点,可得结果.
(2)巧设直线的方程,联立直线与抛物线方程,利用韦达定理,可得,然后根据,可得到的式子,最后可得结果.
(1)依题意:在椭圆中,
,,则,
所以点,则,即.
故抛物线C的方程为.
(2)设直线,,,
联立,消去x,得.
因为,所以,
且.
又,则,
即,代入①,得,
消去,得.易得,
则
由
.
由,
解得或(舍去),
将代入,
得,
又由题意,可得,
解得或.
故存在满足题意的实数,
其取值范围是.
【题目】某公司生产的某种产品,如果年返修率不超过千分之一,则其生产部门当年考核优秀,现获得该公司2014-2018年的相关数据如下表所示:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
年生产台数(万台) | 2 | 4 | 5 | 6 | 8 |
该产品的年利润(百万元) | 30 | 40 | 60 | 50 | 70 |
年返修台数(台) | 19 | 58 | 45 | 71 | 70 |
注:
(1)从该公司2014-2018年的相关数据中任意选取3年的数据,求这3年中至少有2年生产部门考核优秀的概率.
(2)利用上表中五年的数据求出年利润(百万元)关于年生产台数(万台)的回归直线方程是 ①.现该公司计划从2019年开始转型,并决定2019年只生产该产品1万台,且预计2019年可获利32(百万元);但生产部门发现,若用预计的2019年的数据与2014-2018年中考核优秀年份的数据重新建立回归方程,只有当重新估算的,的值(精确到0.01),相对于①中,的值的误差的绝对值都不超过时,2019年该产品返修率才可低于千分之一.若生产部门希望2019年考核优秀,能否同意2019年只生产该产品1万台?请说明理由.
(参考公式:, ,,相对的误差为.)