题目内容
如图,是边长为3的正方形,,,与平面所成的角为.
(1)求二面角的的余弦值;
(2)设点是线段上一动点,试确定的位置,使得,并证明你的结论.
(1);(2)三等分点
解析试题分析:(1)根据平面,确定就是与平面所成的角,从而得到,且,可以建立空间直角坐标系,写出,设出的一个法向量为,根据,解出,而平面的法向量设为,所以利用向量数量积公式得出二面角的余弦值为;(2)由题意设,则,而平面,∴,代入坐标,求出,所以点M的坐标为,此时,∴点M是线段BD靠近B点的三等分点.
试题解析:
平面,就是与平面所成的角,即,∴.
如图,分别以为轴,轴,轴建立空间直角坐标系,则各点的坐标如下,∴,设平面的一个法向量为,则,即,令,则.
∵平面,∴平面的法向量设为,∴,故二面角的余弦值为.
(2)由题意,设,则,∵平面,∴,即解得,∴点M的坐标为,此时,∴点M是线段BD靠近B点的三等分点.
考点:1.直线,平面位置关系的证明;2.利用空间向量求二面角.
练习册系列答案
相关题目