题目内容
【题目】已知函数(为常数, 是自然对数的底数),曲线在点处的切线方程是.
(1)求的值;(2)求的单调区间;
(3)设(其中为的导函数)。证明:对任意,
【答案】(1);(2)单调递增区间是,单调递减区间是;(3)见解析.
【解析】【试题分析】(1)依据题设导数的几何意义建立方程分析求解;(2)依据导数与函数的单调性之间的关系分析求解;(3)先将不等式进行等价转化,再借助导数分析推证:
(1)由得.由已知得,解得.又,即, .
(2)由(1)得,令,
当时, ;当时, ,又当时, ;
当时, , 的单调递增区间是, 的单调递减区间是
(3)由已知有,于是对任意等价于,由(2)知, ,易得,当时, ,即单调递增;当时, ,即单调递减. 的最大值为,故.设则,因此,当, 单调递增, ,故当时, ,即..对任意
练习册系列答案
相关题目
【题目】在高中学习过程中,同学们经常这样说:“如果物理成绩好,那么学习数学就没什么问题.”某班针对“高中生物理学习对数学学习的影响”进行研究,得到了学生的物理成绩与数学成绩具有线性相关关系的结论.现从该班随机抽取5名学生在一次考试中的物理和数学成绩,如下表:
编号 成绩 | 1 | 2 | 3 | 4 | 5 |
物理() | 90 | 85 | 74 | 68 | 63 |
数学() | 130 | 125 | 110 | 95 | 90 |
(1)求数学成绩关于物理成绩的线性回归方程(精确到),若某位学生的物理成绩为80分,预测他的数学成绩;
(2)要从抽取的五位学生中随机选出三位参加一项知识竞赛,以表示选中的学生的数学成绩高于100分的人数,求随机变量的分布列及数学期望.
(参数公式: , .)
参考数据: ,